Description: Foulis-Holland Theorem. If any 2 pairs in a triple of orthomodular lattice elements commute, the triple is distributive. First of two parts. Theorem 5 of Kalmbach p. 25. (Contributed by NM, 14-Jun-2006) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | fh1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | chincl | |
|
2 | chincl | |
|
3 | chjcl | |
|
4 | 1 2 3 | syl2an | |
5 | 4 | anandis | |
6 | chjcl | |
|
7 | chincl | |
|
8 | 6 7 | sylan2 | |
9 | chsh | |
|
10 | 8 9 | syl | |
11 | 5 10 | jca | |
12 | 11 | 3impb | |
13 | 12 | adantr | |
14 | ledi | |
|
15 | 14 | adantr | |
16 | incom | |
|
17 | 16 | a1i | |
18 | chdmj1 | |
|
19 | 1 2 18 | syl2an | |
20 | chdmm1 | |
|
21 | chdmm1 | |
|
22 | 20 21 | ineqan12d | |
23 | 19 22 | eqtrd | |
24 | 17 23 | ineq12d | |
25 | 24 | 3impdi | |
26 | 25 | adantr | |
27 | inass | |
|
28 | cmcm2 | |
|
29 | choccl | |
|
30 | cmbr3 | |
|
31 | 29 30 | sylan2 | |
32 | 28 31 | bitrd | |
33 | 32 | biimpa | |
34 | 33 | 3adantl3 | |
35 | 34 | adantrr | |
36 | cmcm2 | |
|
37 | choccl | |
|
38 | cmbr3 | |
|
39 | 37 38 | sylan2 | |
40 | 36 39 | bitrd | |
41 | 40 | biimpa | |
42 | 41 | 3adantl2 | |
43 | 42 | adantrl | |
44 | 35 43 | ineq12d | |
45 | inindi | |
|
46 | inindi | |
|
47 | 44 45 46 | 3eqtr4g | |
48 | 47 | ineq2d | |
49 | 27 48 | eqtrid | |
50 | in12 | |
|
51 | 49 50 | eqtrdi | |
52 | chdmj1 | |
|
53 | 52 | ineq2d | |
54 | chocin | |
|
55 | 6 54 | syl | |
56 | 53 55 | eqtr3d | |
57 | 56 | ineq2d | |
58 | chm0 | |
|
59 | 57 58 | sylan9eqr | |
60 | 59 | 3impb | |
61 | 60 | adantr | |
62 | 51 61 | eqtrd | |
63 | 26 62 | eqtrd | |
64 | pjoml | |
|
65 | 13 15 63 64 | syl12anc | |
66 | 65 | eqcomd | |