Metamath Proof Explorer


Theorem fldextrspundgdvds

Description: Given two finite extensions I / K and J / K of the same field K , the degree of the extension I / K divides the degree of the extension E / K , E being the composite field I J . (Contributed by Thierry Arnoux, 19-Oct-2025)

Ref Expression
Hypotheses fldextrspun.k K = L 𝑠 F
fldextrspun.i I = L 𝑠 G
fldextrspun.j J = L 𝑠 H
fldextrspun.2 φ L Field
fldextrspun.3 φ F SubDRing I
fldextrspun.4 φ F SubDRing J
fldextrspun.5 φ G SubDRing L
fldextrspun.6 φ H SubDRing L
fldextrspundglemul.7 φ J .:. K 0
fldextrspundglemul.1 E = L 𝑠 L fldGen G H
fldextrspundgledvds.1 φ I .:. K
Assertion fldextrspundgdvds φ I : K E : K

Proof

Step Hyp Ref Expression
1 fldextrspun.k K = L 𝑠 F
2 fldextrspun.i I = L 𝑠 G
3 fldextrspun.j J = L 𝑠 H
4 fldextrspun.2 φ L Field
5 fldextrspun.3 φ F SubDRing I
6 fldextrspun.4 φ F SubDRing J
7 fldextrspun.5 φ G SubDRing L
8 fldextrspun.6 φ H SubDRing L
9 fldextrspundglemul.7 φ J .:. K 0
10 fldextrspundglemul.1 E = L 𝑠 L fldGen G H
11 fldextrspundgledvds.1 φ I .:. K
12 1 2 3 4 5 6 7 8 9 10 11 fldextrspundgdvdslem φ E .:. I 0
13 12 nn0zd φ E .:. I
14 11 nnzd φ I .:. K
15 eqid Base L = Base L
16 4 flddrngd φ L DivRing
17 15 sdrgss G SubDRing L G Base L
18 7 17 syl φ G Base L
19 15 sdrgss H SubDRing L H Base L
20 8 19 syl φ H Base L
21 18 20 unssd φ G H Base L
22 15 16 21 fldgensdrg φ L fldGen G H SubDRing L
23 eqid RingSpan L = RingSpan L
24 eqid RingSpan L G H = RingSpan L G H
25 eqid L 𝑠 RingSpan L G H = L 𝑠 RingSpan L G H
26 1 2 3 4 5 6 7 8 9 23 24 25 fldextrspunlem2 φ RingSpan L G H = L fldGen G H
27 26 oveq2d φ L 𝑠 RingSpan L G H = L 𝑠 L fldGen G H
28 10 27 eqtr4id φ E = L 𝑠 RingSpan L G H
29 1 2 3 4 5 6 7 8 9 23 24 25 fldextrspunfld φ L 𝑠 RingSpan L G H Field
30 28 29 eqeltrd φ E Field
31 30 flddrngd φ E DivRing
32 31 drngringd φ E Ring
33 10 oveq1i E 𝑠 F = L 𝑠 L fldGen G H 𝑠 F
34 ovexd φ L fldGen G H V
35 eqid Base I = Base I
36 35 sdrgss F SubDRing I F Base I
37 5 36 syl φ F Base I
38 2 15 ressbas2 G Base L G = Base I
39 18 38 syl φ G = Base I
40 37 39 sseqtrrd φ F G
41 ssun1 G G H
42 41 a1i φ G G H
43 40 42 sstrd φ F G H
44 15 16 21 fldgenssid φ G H L fldGen G H
45 43 44 sstrd φ F L fldGen G H
46 ressabs L fldGen G H V F L fldGen G H L 𝑠 L fldGen G H 𝑠 F = L 𝑠 F
47 34 45 46 syl2anc φ L 𝑠 L fldGen G H 𝑠 F = L 𝑠 F
48 33 47 eqtrid φ E 𝑠 F = L 𝑠 F
49 2 oveq1i I 𝑠 F = L 𝑠 G 𝑠 F
50 ressabs G SubDRing L F G L 𝑠 G 𝑠 F = L 𝑠 F
51 7 40 50 syl2anc φ L 𝑠 G 𝑠 F = L 𝑠 F
52 49 51 eqtrid φ I 𝑠 F = L 𝑠 F
53 48 52 eqtr4d φ E 𝑠 F = I 𝑠 F
54 eqid I 𝑠 F = I 𝑠 F
55 54 sdrgdrng F SubDRing I I 𝑠 F DivRing
56 5 55 syl φ I 𝑠 F DivRing
57 53 56 eqeltrd φ E 𝑠 F DivRing
58 57 drngringd φ E 𝑠 F Ring
59 15 16 21 fldgenssv φ L fldGen G H Base L
60 10 15 ressbas2 L fldGen G H Base L L fldGen G H = Base E
61 59 60 syl φ L fldGen G H = Base E
62 45 61 sseqtrd φ F Base E
63 16 drngringd φ L Ring
64 42 44 sstrd φ G L fldGen G H
65 sdrgsubrg G SubDRing L G SubRing L
66 eqid 1 L = 1 L
67 66 subrg1cl G SubRing L 1 L G
68 7 65 67 3syl φ 1 L G
69 64 68 sseldd φ 1 L L fldGen G H
70 10 15 66 ress1r L Ring 1 L L fldGen G H L fldGen G H Base L 1 L = 1 E
71 63 69 59 70 syl3anc φ 1 L = 1 E
72 2 15 66 ress1r L Ring 1 L G G Base L 1 L = 1 I
73 63 68 18 72 syl3anc φ 1 L = 1 I
74 71 73 eqtr3d φ 1 E = 1 I
75 sdrgsubrg F SubDRing I F SubRing I
76 eqid 1 I = 1 I
77 76 subrg1cl F SubRing I 1 I F
78 5 75 77 3syl φ 1 I F
79 74 78 eqeltrd φ 1 E F
80 eqid Base E = Base E
81 eqid 1 E = 1 E
82 80 81 issubrg F SubRing E E Ring E 𝑠 F Ring F Base E 1 E F
83 32 58 62 79 82 syl22anbrc φ F SubRing E
84 issdrg F SubDRing E E DivRing F SubRing E E 𝑠 F DivRing
85 31 83 57 84 syl3anbrc φ F SubDRing E
86 10 4 22 85 1 fldsdrgfldext2 φ E /FldExt K
87 extdgcl E /FldExt K E .:. K 0 *
88 86 87 syl φ E .:. K 0 *
89 11 nnnn0d φ I .:. K 0
90 89 9 nn0mulcld φ I : K J : K 0
91 1 2 3 4 5 6 7 8 9 10 fldextrspundglemul φ E .:. K I : K 𝑒 J : K
92 11 nnred φ I .:. K
93 9 nn0red φ J .:. K
94 rexmul I .:. K J .:. K I : K 𝑒 J : K = I : K J : K
95 92 93 94 syl2anc φ I : K 𝑒 J : K = I : K J : K
96 91 95 breqtrd φ E .:. K I : K J : K
97 xnn0lenn0nn0 E .:. K 0 * I : K J : K 0 E .:. K I : K J : K E .:. K 0
98 88 90 96 97 syl3anc φ E .:. K 0
99 98 nn0zd φ E .:. K
100 15 2 10 4 7 20 fldgenfldext φ E /FldExt I
101 2 4 7 5 1 fldsdrgfldext2 φ I /FldExt K
102 extdgmul E /FldExt I I /FldExt K E .:. K = E : I 𝑒 I : K
103 100 101 102 syl2anc φ E .:. K = E : I 𝑒 I : K
104 12 nn0red φ E .:. I
105 rexmul E .:. I I .:. K E : I 𝑒 I : K = E : I I : K
106 104 92 105 syl2anc φ E : I 𝑒 I : K = E : I I : K
107 103 106 eqtr2d φ E : I I : K = E .:. K
108 dvds0lem E .:. I I .:. K E .:. K E : I I : K = E .:. K I : K E : K
109 13 14 99 107 108 syl31anc φ I : K E : K