| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fndm |
|
| 2 |
1
|
rabeqdv |
|
| 3 |
2
|
3ad2ant1 |
|
| 4 |
3
|
sseq1d |
|
| 5 |
|
unss |
|
| 6 |
|
ssrab2 |
|
| 7 |
6
|
biantrur |
|
| 8 |
|
rabun2 |
|
| 9 |
8
|
sseq1i |
|
| 10 |
5 7 9
|
3bitr4ri |
|
| 11 |
|
rabss |
|
| 12 |
|
fvres |
|
| 13 |
12
|
adantl |
|
| 14 |
|
simp2r |
|
| 15 |
|
fvconst2g |
|
| 16 |
14 15
|
sylan |
|
| 17 |
13 16
|
eqeq12d |
|
| 18 |
|
nne |
|
| 19 |
18
|
a1i |
|
| 20 |
|
id |
|
| 21 |
|
simp3 |
|
| 22 |
|
minel |
|
| 23 |
20 21 22
|
syl2anr |
|
| 24 |
|
mtt |
|
| 25 |
23 24
|
syl |
|
| 26 |
17 19 25
|
3bitr2rd |
|
| 27 |
26
|
ralbidva |
|
| 28 |
11 27
|
bitrid |
|
| 29 |
10 28
|
bitrid |
|
| 30 |
4 29
|
bitrd |
|
| 31 |
|
fnfun |
|
| 32 |
31
|
3anim1i |
|
| 33 |
32
|
3expb |
|
| 34 |
|
suppval1 |
|
| 35 |
33 34
|
syl |
|
| 36 |
35
|
3adant3 |
|
| 37 |
36
|
sseq1d |
|
| 38 |
|
simp1 |
|
| 39 |
|
ssun2 |
|
| 40 |
39
|
a1i |
|
| 41 |
|
fnssres |
|
| 42 |
38 40 41
|
syl2anc |
|
| 43 |
|
fnconstg |
|
| 44 |
43
|
adantl |
|
| 45 |
44
|
3ad2ant2 |
|
| 46 |
|
eqfnfv |
|
| 47 |
42 45 46
|
syl2anc |
|
| 48 |
30 37 47
|
3bitr4d |
|