Metamath Proof Explorer


Theorem fnsuppres

Description: Two ways to express restriction of a support set. (Contributed by Stefan O'Rear, 5-Feb-2015) (Revised by AV, 28-May-2019)

Ref Expression
Assertion fnsuppres FFnABFWZVAB=FsuppZAFB=B×Z

Proof

Step Hyp Ref Expression
1 fndm FFnABdomF=AB
2 1 rabeqdv FFnABadomF|FaZ=aAB|FaZ
3 2 3ad2ant1 FFnABFWZVAB=adomF|FaZ=aAB|FaZ
4 3 sseq1d FFnABFWZVAB=adomF|FaZAaAB|FaZA
5 unss aA|FaZAaB|FaZAaA|FaZaB|FaZA
6 ssrab2 aA|FaZA
7 6 biantrur aB|FaZAaA|FaZAaB|FaZA
8 rabun2 aAB|FaZ=aA|FaZaB|FaZ
9 8 sseq1i aAB|FaZAaA|FaZaB|FaZA
10 5 7 9 3bitr4ri aAB|FaZAaB|FaZA
11 rabss aB|FaZAaBFaZaA
12 fvres aBFBa=Fa
13 12 adantl FFnABFWZVAB=aBFBa=Fa
14 simp2r FFnABFWZVAB=ZV
15 fvconst2g ZVaBB×Za=Z
16 14 15 sylan FFnABFWZVAB=aBB×Za=Z
17 13 16 eqeq12d FFnABFWZVAB=aBFBa=B×ZaFa=Z
18 nne ¬FaZFa=Z
19 18 a1i FFnABFWZVAB=aB¬FaZFa=Z
20 id aBaB
21 simp3 FFnABFWZVAB=AB=
22 minel aBAB=¬aA
23 20 21 22 syl2anr FFnABFWZVAB=aB¬aA
24 mtt ¬aA¬FaZFaZaA
25 23 24 syl FFnABFWZVAB=aB¬FaZFaZaA
26 17 19 25 3bitr2rd FFnABFWZVAB=aBFaZaAFBa=B×Za
27 26 ralbidva FFnABFWZVAB=aBFaZaAaBFBa=B×Za
28 11 27 bitrid FFnABFWZVAB=aB|FaZAaBFBa=B×Za
29 10 28 bitrid FFnABFWZVAB=aAB|FaZAaBFBa=B×Za
30 4 29 bitrd FFnABFWZVAB=adomF|FaZAaBFBa=B×Za
31 fnfun FFnABFunF
32 31 3anim1i FFnABFWZVFunFFWZV
33 32 3expb FFnABFWZVFunFFWZV
34 suppval1 FunFFWZVFsuppZ=adomF|FaZ
35 33 34 syl FFnABFWZVFsuppZ=adomF|FaZ
36 35 3adant3 FFnABFWZVAB=FsuppZ=adomF|FaZ
37 36 sseq1d FFnABFWZVAB=FsuppZAadomF|FaZA
38 simp1 FFnABFWZVAB=FFnAB
39 ssun2 BAB
40 39 a1i FFnABFWZVAB=BAB
41 fnssres FFnABBABFBFnB
42 38 40 41 syl2anc FFnABFWZVAB=FBFnB
43 fnconstg ZVB×ZFnB
44 43 adantl FWZVB×ZFnB
45 44 3ad2ant2 FFnABFWZVAB=B×ZFnB
46 eqfnfv FBFnBB×ZFnBFB=B×ZaBFBa=B×Za
47 42 45 46 syl2anc FFnABFWZVAB=FB=B×ZaBFBa=B×Za
48 30 37 47 3bitr4d FFnABFWZVAB=FsuppZAFB=B×Z