Description: Two ways to express restriction of a support set. (Contributed by Stefan O'Rear, 5-Feb-2015) (Revised by AV, 28-May-2019)
Ref | Expression | ||
---|---|---|---|
Assertion | fnsuppres | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fndm | |
|
2 | 1 | rabeqdv | |
3 | 2 | 3ad2ant1 | |
4 | 3 | sseq1d | |
5 | unss | |
|
6 | ssrab2 | |
|
7 | 6 | biantrur | |
8 | rabun2 | |
|
9 | 8 | sseq1i | |
10 | 5 7 9 | 3bitr4ri | |
11 | rabss | |
|
12 | fvres | |
|
13 | 12 | adantl | |
14 | simp2r | |
|
15 | fvconst2g | |
|
16 | 14 15 | sylan | |
17 | 13 16 | eqeq12d | |
18 | nne | |
|
19 | 18 | a1i | |
20 | id | |
|
21 | simp3 | |
|
22 | minel | |
|
23 | 20 21 22 | syl2anr | |
24 | mtt | |
|
25 | 23 24 | syl | |
26 | 17 19 25 | 3bitr2rd | |
27 | 26 | ralbidva | |
28 | 11 27 | bitrid | |
29 | 10 28 | bitrid | |
30 | 4 29 | bitrd | |
31 | fnfun | |
|
32 | 31 | 3anim1i | |
33 | 32 | 3expb | |
34 | suppval1 | |
|
35 | 33 34 | syl | |
36 | 35 | 3adant3 | |
37 | 36 | sseq1d | |
38 | simp1 | |
|
39 | ssun2 | |
|
40 | 39 | a1i | |
41 | fnssres | |
|
42 | 38 40 41 | syl2anc | |
43 | fnconstg | |
|
44 | 43 | adantl | |
45 | 44 | 3ad2ant2 | |
46 | eqfnfv | |
|
47 | 42 45 46 | syl2anc | |
48 | 30 37 47 | 3bitr4d | |