Metamath Proof Explorer


Theorem fodomr

Description: There exists a mapping from a set onto any (nonempty) set that it dominates. (Contributed by NM, 23-Mar-2006)

Ref Expression
Assertion fodomr BBAff:AontoB

Proof

Step Hyp Ref Expression
1 reldom Rel
2 1 brrelex2i BAAV
3 2 adantl BBAAV
4 1 brrelex1i BABV
5 0sdomg BVBB
6 n0 BzzB
7 5 6 bitrdi BVBzzB
8 4 7 syl BABzzB
9 8 biimpac BBAzzB
10 brdomi BAgg:B1-1A
11 10 adantl BBAgg:B1-1A
12 difexg AVArangV
13 vsnex zV
14 xpexg ArangVzVArang×zV
15 12 13 14 sylancl AVArang×zV
16 vex gV
17 16 cnvex g-1V
18 15 17 jctil AVg-1VArang×zV
19 unexb g-1VArang×zVg-1Arang×zV
20 18 19 sylib AVg-1Arang×zV
21 df-f1 g:B1-1Ag:BAFung-1
22 21 simprbi g:B1-1AFung-1
23 vex zV
24 23 fconst Arang×z:Arangz
25 ffun Arang×z:ArangzFunArang×z
26 24 25 ax-mp FunArang×z
27 22 26 jctir g:B1-1AFung-1FunArang×z
28 df-rn rang=domg-1
29 28 eqcomi domg-1=rang
30 23 snnz z
31 dmxp zdomArang×z=Arang
32 30 31 ax-mp domArang×z=Arang
33 29 32 ineq12i domg-1domArang×z=rangArang
34 disjdif rangArang=
35 33 34 eqtri domg-1domArang×z=
36 funun Fung-1FunArang×zdomg-1domArang×z=Fung-1Arang×z
37 27 35 36 sylancl g:B1-1AFung-1Arang×z
38 37 adantl zBg:B1-1AFung-1Arang×z
39 dmun domg-1Arang×z=domg-1domArang×z
40 28 uneq1i rangdomArang×z=domg-1domArang×z
41 32 uneq2i rangdomArang×z=rangArang
42 39 40 41 3eqtr2i domg-1Arang×z=rangArang
43 f1f g:B1-1Ag:BA
44 43 frnd g:B1-1ArangA
45 undif rangArangArang=A
46 44 45 sylib g:B1-1ArangArang=A
47 42 46 eqtrid g:B1-1Adomg-1Arang×z=A
48 47 adantl zBg:B1-1Adomg-1Arang×z=A
49 df-fn g-1Arang×zFnAFung-1Arang×zdomg-1Arang×z=A
50 38 48 49 sylanbrc zBg:B1-1Ag-1Arang×zFnA
51 rnun rang-1Arang×z=rang-1ranArang×z
52 dfdm4 domg=rang-1
53 f1dm g:B1-1Adomg=B
54 52 53 eqtr3id g:B1-1Arang-1=B
55 54 uneq1d g:B1-1Arang-1ranArang×z=BranArang×z
56 xpeq1 Arang=Arang×z=×z
57 0xp ×z=
58 56 57 eqtrdi Arang=Arang×z=
59 58 rneqd Arang=ranArang×z=ran
60 rn0 ran=
61 59 60 eqtrdi Arang=ranArang×z=
62 0ss B
63 61 62 eqsstrdi Arang=ranArang×zB
64 63 a1d Arang=zBranArang×zB
65 rnxp ArangranArang×z=z
66 65 adantr ArangzBranArang×z=z
67 snssi zBzB
68 67 adantl ArangzBzB
69 66 68 eqsstrd ArangzBranArang×zB
70 69 ex ArangzBranArang×zB
71 64 70 pm2.61ine zBranArang×zB
72 ssequn2 ranArang×zBBranArang×z=B
73 71 72 sylib zBBranArang×z=B
74 55 73 sylan9eqr zBg:B1-1Arang-1ranArang×z=B
75 51 74 eqtrid zBg:B1-1Arang-1Arang×z=B
76 df-fo g-1Arang×z:AontoBg-1Arang×zFnArang-1Arang×z=B
77 50 75 76 sylanbrc zBg:B1-1Ag-1Arang×z:AontoB
78 foeq1 f=g-1Arang×zf:AontoBg-1Arang×z:AontoB
79 78 spcegv g-1Arang×zVg-1Arang×z:AontoBff:AontoB
80 20 77 79 syl2im AVzBg:B1-1Aff:AontoB
81 80 expdimp AVzBg:B1-1Aff:AontoB
82 81 exlimdv AVzBgg:B1-1Aff:AontoB
83 82 ex AVzBgg:B1-1Aff:AontoB
84 83 exlimdv AVzzBgg:B1-1Aff:AontoB
85 3 9 11 84 syl3c BBAff:AontoB