Metamath Proof Explorer


Theorem fofinf1o

Description: Any surjection from one finite set to another of equal size must be a bijection. (Contributed by Mario Carneiro, 19-Aug-2014)

Ref Expression
Assertion fofinf1o F:AontoBABBFinF:A1-1 ontoB

Proof

Step Hyp Ref Expression
1 simp1 F:AontoBABBFinF:AontoB
2 fof F:AontoBF:AB
3 1 2 syl F:AontoBABBFinF:AB
4 domnsym BAy¬AyB
5 simp3 F:AontoBABBFinBFin
6 simp2 F:AontoBABBFinAB
7 enfii BFinABAFin
8 5 6 7 syl2anc F:AontoBABBFinAFin
9 8 ad2antrr F:AontoBABBFinxAyAFx=FyAFin
10 difssd F:AontoBABBFinxAyAFx=FyAyA
11 simplrr F:AontoBABBFinxAyAFx=FyyA
12 neldifsn ¬yAy
13 nelne1 yA¬yAyAAy
14 11 12 13 sylancl F:AontoBABBFinxAyAFx=FyAAy
15 14 necomd F:AontoBABBFinxAyAFx=FyAyA
16 df-pss AyAAyAAyA
17 10 15 16 sylanbrc F:AontoBABBFinxAyAFx=FyAyA
18 php3 AFinAyAAyA
19 9 17 18 syl2anc F:AontoBABBFinxAyAFx=FyAyA
20 6 ad2antrr F:AontoBABBFinxAyAFx=FyAB
21 sdomentr AyAABAyB
22 19 20 21 syl2anc F:AontoBABBFinxAyAFx=FyAyB
23 4 22 nsyl3 F:AontoBABBFinxAyAFx=Fy¬BAy
24 8 adantr F:AontoBABBFinxAyAFx=FyxyAFin
25 difss AyA
26 ssfi AFinAyAAyFin
27 24 25 26 sylancl F:AontoBABBFinxAyAFx=FyxyAyFin
28 3 adantr F:AontoBABBFinxAyAFx=FyxyF:AB
29 fssres F:ABAyAFAy:AyB
30 28 25 29 sylancl F:AontoBABBFinxAyAFx=FyxyFAy:AyB
31 1 adantr F:AontoBABBFinxAyAFx=FyxyF:AontoB
32 foelrn F:AontoBzBuAz=Fu
33 31 32 sylan F:AontoBABBFinxAyAFx=FyxyzBuAz=Fu
34 simprll F:AontoBABBFinxAyAFx=FyxyxA
35 simprrr F:AontoBABBFinxAyAFx=Fyxyxy
36 eldifsn xAyxAxy
37 34 35 36 sylanbrc F:AontoBABBFinxAyAFx=FyxyxAy
38 simprrl F:AontoBABBFinxAyAFx=FyxyFx=Fy
39 38 eqcomd F:AontoBABBFinxAyAFx=FyxyFy=Fx
40 fveq2 w=xFw=Fx
41 40 rspceeqv xAyFy=FxwAyFy=Fw
42 37 39 41 syl2anc F:AontoBABBFinxAyAFx=FyxywAyFy=Fw
43 fveqeq2 u=yFu=FwFy=Fw
44 43 rexbidv u=ywAyFu=FwwAyFy=Fw
45 42 44 syl5ibrcom F:AontoBABBFinxAyAFx=Fyxyu=ywAyFu=Fw
46 45 adantr F:AontoBABBFinxAyAFx=FyxyuAu=ywAyFu=Fw
47 46 imp F:AontoBABBFinxAyAFx=FyxyuAu=ywAyFu=Fw
48 eldifsn uAyuAuy
49 eqid Fu=Fu
50 fveq2 w=uFw=Fu
51 50 rspceeqv uAyFu=FuwAyFu=Fw
52 49 51 mpan2 uAywAyFu=Fw
53 48 52 sylbir uAuywAyFu=Fw
54 53 adantll F:AontoBABBFinxAyAFx=FyxyuAuywAyFu=Fw
55 47 54 pm2.61dane F:AontoBABBFinxAyAFx=FyxyuAwAyFu=Fw
56 fvres wAyFAyw=Fw
57 56 eqeq2d wAyz=FAywz=Fw
58 57 rexbiia wAyz=FAywwAyz=Fw
59 eqeq1 z=Fuz=FwFu=Fw
60 59 rexbidv z=FuwAyz=FwwAyFu=Fw
61 58 60 bitrid z=FuwAyz=FAywwAyFu=Fw
62 55 61 syl5ibrcom F:AontoBABBFinxAyAFx=FyxyuAz=FuwAyz=FAyw
63 62 rexlimdva F:AontoBABBFinxAyAFx=FyxyuAz=FuwAyz=FAyw
64 63 imp F:AontoBABBFinxAyAFx=FyxyuAz=FuwAyz=FAyw
65 33 64 syldan F:AontoBABBFinxAyAFx=FyxyzBwAyz=FAyw
66 65 ralrimiva F:AontoBABBFinxAyAFx=FyxyzBwAyz=FAyw
67 dffo3 FAy:AyontoBFAy:AyBzBwAyz=FAyw
68 30 66 67 sylanbrc F:AontoBABBFinxAyAFx=FyxyFAy:AyontoB
69 fodomfi AyFinFAy:AyontoBBAy
70 27 68 69 syl2anc F:AontoBABBFinxAyAFx=FyxyBAy
71 70 anassrs F:AontoBABBFinxAyAFx=FyxyBAy
72 71 expr F:AontoBABBFinxAyAFx=FyxyBAy
73 72 necon1bd F:AontoBABBFinxAyAFx=Fy¬BAyx=y
74 23 73 mpd F:AontoBABBFinxAyAFx=Fyx=y
75 74 ex F:AontoBABBFinxAyAFx=Fyx=y
76 75 ralrimivva F:AontoBABBFinxAyAFx=Fyx=y
77 dff13 F:A1-1BF:ABxAyAFx=Fyx=y
78 3 76 77 sylanbrc F:AontoBABBFinF:A1-1B
79 df-f1o F:A1-1 ontoBF:A1-1BF:AontoB
80 78 1 79 sylanbrc F:AontoBABBFinF:A1-1 ontoB