Metamath Proof Explorer


Theorem fourierdlem10

Description: Condition on the bounds of a nonempty subinterval. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses fourierdlem10.1 φA
fourierdlem10.2 φB
fourierdlem10.3 φC
fourierdlem10.4 φD
fourierdlem10.5 φC<D
fourierdlem10.6 φCDAB
Assertion fourierdlem10 φACDB

Proof

Step Hyp Ref Expression
1 fourierdlem10.1 φA
2 fourierdlem10.2 φB
3 fourierdlem10.3 φC
4 fourierdlem10.4 φD
5 fourierdlem10.5 φC<D
6 fourierdlem10.6 φCDAB
7 6 adantr φC<ACDAB
8 3 rexrd φC*
9 8 adantr φC<AC*
10 4 rexrd φD*
11 10 adantr φC<AD*
12 3 1 readdcld φC+A
13 12 rehalfcld φC+A2
14 3 4 readdcld φC+D
15 14 rehalfcld φC+D2
16 13 15 ifcld φifADC+A2C+D2
17 16 adantr φC<AifADC+A2C+D2
18 simplr φC<AADC<A
19 3 ad2antrr φC<AADC
20 1 ad2antrr φC<AADA
21 avglt1 CAC<AC<C+A2
22 19 20 21 syl2anc φC<AADC<AC<C+A2
23 18 22 mpbid φC<AADC<C+A2
24 iftrue ADifADC+A2C+D2=C+A2
25 24 adantl φC<AADifADC+A2C+D2=C+A2
26 23 25 breqtrrd φC<AADC<ifADC+A2C+D2
27 5 adantr φ¬ADC<D
28 3 adantr φ¬ADC
29 4 adantr φ¬ADD
30 avglt1 CDC<DC<C+D2
31 28 29 30 syl2anc φ¬ADC<DC<C+D2
32 27 31 mpbid φ¬ADC<C+D2
33 iffalse ¬ADifADC+A2C+D2=C+D2
34 33 eqcomd ¬ADC+D2=ifADC+A2C+D2
35 34 adantl φ¬ADC+D2=ifADC+A2C+D2
36 32 35 breqtrd φ¬ADC<ifADC+A2C+D2
37 36 adantlr φC<A¬ADC<ifADC+A2C+D2
38 26 37 pm2.61dan φC<AC<ifADC+A2C+D2
39 24 adantl φADifADC+A2C+D2=C+A2
40 12 adantr φADC+A
41 14 adantr φADC+D
42 2rp 2+
43 42 a1i φAD2+
44 1 adantr φADA
45 4 adantr φADD
46 3 adantr φADC
47 simpr φADAD
48 44 45 46 47 leadd2dd φADC+AC+D
49 40 41 43 48 lediv1dd φADC+A2C+D2
50 39 49 eqbrtrd φADifADC+A2C+D2C+D2
51 33 adantl φ¬ADifADC+A2C+D2=C+D2
52 15 leidd φC+D2C+D2
53 52 adantr φ¬ADC+D2C+D2
54 51 53 eqbrtrd φ¬ADifADC+A2C+D2C+D2
55 50 54 pm2.61dan φifADC+A2C+D2C+D2
56 avglt2 CDC<DC+D2<D
57 3 4 56 syl2anc φC<DC+D2<D
58 5 57 mpbid φC+D2<D
59 16 15 4 55 58 lelttrd φifADC+A2C+D2<D
60 59 adantr φC<AifADC+A2C+D2<D
61 9 11 17 38 60 eliood φC<AifADC+A2C+D2CD
62 1 adantr φC<AA
63 13 adantr φC<AC+A2
64 16 adantr φADifADC+A2C+D2
65 64 39 eqled φADifADC+A2C+D2C+A2
66 16 adantr φ¬ADifADC+A2C+D2
67 13 adantr φ¬ADC+A2
68 simpr φ¬AD¬AD
69 1 adantr φ¬ADA
70 29 69 ltnled φ¬ADD<A¬AD
71 68 70 mpbird φ¬ADD<A
72 14 adantr φD<AC+D
73 12 adantr φD<AC+A
74 42 a1i φD<A2+
75 4 adantr φD<AD
76 1 adantr φD<AA
77 3 adantr φD<AC
78 simpr φD<AD<A
79 75 76 77 78 ltadd2dd φD<AC+D<C+A
80 72 73 74 79 ltdiv1dd φD<AC+D2<C+A2
81 71 80 syldan φ¬ADC+D2<C+A2
82 51 81 eqbrtrd φ¬ADifADC+A2C+D2<C+A2
83 66 67 82 ltled φ¬ADifADC+A2C+D2C+A2
84 65 83 pm2.61dan φifADC+A2C+D2C+A2
85 84 adantr φC<AifADC+A2C+D2C+A2
86 simpr φC<AC<A
87 3 adantr φC<AC
88 avglt2 CAC<AC+A2<A
89 87 62 88 syl2anc φC<AC<AC+A2<A
90 86 89 mpbid φC<AC+A2<A
91 17 63 62 85 90 lelttrd φC<AifADC+A2C+D2<A
92 17 62 91 ltnsymd φC<A¬A<ifADC+A2C+D2
93 92 intn3an2d φC<A¬ifADC+A2C+D2A<ifADC+A2C+D2ifADC+A2C+D2<B
94 1 rexrd φA*
95 94 adantr φC<AA*
96 2 rexrd φB*
97 96 adantr φC<AB*
98 elioo2 A*B*ifADC+A2C+D2ABifADC+A2C+D2A<ifADC+A2C+D2ifADC+A2C+D2<B
99 95 97 98 syl2anc φC<AifADC+A2C+D2ABifADC+A2C+D2A<ifADC+A2C+D2ifADC+A2C+D2<B
100 93 99 mtbird φC<A¬ifADC+A2C+D2AB
101 nelss ifADC+A2C+D2CD¬ifADC+A2C+D2AB¬CDAB
102 61 100 101 syl2anc φC<A¬CDAB
103 7 102 pm2.65da φ¬C<A
104 1 3 103 nltled φAC
105 6 adantr φB<DCDAB
106 8 adantr φB<DC*
107 10 adantr φB<DD*
108 2 4 readdcld φB+D
109 108 rehalfcld φB+D2
110 109 15 ifcld φifCBB+D2C+D2
111 110 adantr φB<DifCBB+D2C+D2
112 3 adantr φCBC
113 15 adantr φCBC+D2
114 110 adantr φCBifCBB+D2C+D2
115 3 4 30 syl2anc φC<DC<C+D2
116 5 115 mpbid φC<C+D2
117 116 adantr φCBC<C+D2
118 14 adantr φCBC+D
119 108 adantr φCBB+D
120 42 a1i φCB2+
121 2 adantr φCBB
122 4 adantr φCBD
123 simpr φCBCB
124 112 121 122 123 leadd1dd φCBC+DB+D
125 118 119 120 124 lediv1dd φCBC+D2B+D2
126 iftrue CBifCBB+D2C+D2=B+D2
127 126 adantl φCBifCBB+D2C+D2=B+D2
128 125 127 breqtrrd φCBC+D2ifCBB+D2C+D2
129 112 113 114 117 128 ltletrd φCBC<ifCBB+D2C+D2
130 116 adantr φ¬CBC<C+D2
131 iffalse ¬CBifCBB+D2C+D2=C+D2
132 131 eqcomd ¬CBC+D2=ifCBB+D2C+D2
133 132 adantl φ¬CBC+D2=ifCBB+D2C+D2
134 130 133 breqtrd φ¬CBC<ifCBB+D2C+D2
135 129 134 pm2.61dan φC<ifCBB+D2C+D2
136 135 adantr φB<DC<ifCBB+D2C+D2
137 126 adantl φB<DCBifCBB+D2C+D2=B+D2
138 simpr φB<DB<D
139 2 adantr φB<DB
140 4 adantr φB<DD
141 avglt2 BDB<DB+D2<D
142 139 140 141 syl2anc φB<DB<DB+D2<D
143 138 142 mpbid φB<DB+D2<D
144 143 adantr φB<DCBB+D2<D
145 137 144 eqbrtrd φB<DCBifCBB+D2C+D2<D
146 131 adantl φ¬CBifCBB+D2C+D2=C+D2
147 58 adantr φ¬CBC+D2<D
148 146 147 eqbrtrd φ¬CBifCBB+D2C+D2<D
149 148 adantlr φB<D¬CBifCBB+D2C+D2<D
150 145 149 pm2.61dan φB<DifCBB+D2C+D2<D
151 106 107 111 136 150 eliood φB<DifCBB+D2C+D2CD
152 109 adantr φB<DB+D2
153 avglt1 BDB<DB<B+D2
154 139 140 153 syl2anc φB<DB<DB<B+D2
155 138 154 mpbid φB<DB<B+D2
156 139 152 155 ltled φB<DBB+D2
157 156 adantr φB<DCBBB+D2
158 157 137 breqtrrd φB<DCBBifCBB+D2C+D2
159 2 adantr φ¬CBB
160 15 adantr φ¬CBC+D2
161 3 adantr φ¬CBC
162 simpr φ¬CB¬CB
163 159 161 ltnled φ¬CBB<C¬CB
164 162 163 mpbird φ¬CBB<C
165 159 161 160 164 130 lttrd φ¬CBB<C+D2
166 159 160 165 ltled φ¬CBBC+D2
167 166 133 breqtrd φ¬CBBifCBB+D2C+D2
168 167 adantlr φB<D¬CBBifCBB+D2C+D2
169 158 168 pm2.61dan φB<DBifCBB+D2C+D2
170 139 111 169 lensymd φB<D¬ifCBB+D2C+D2<B
171 170 intn3an3d φB<D¬ifCBB+D2C+D2A<ifCBB+D2C+D2ifCBB+D2C+D2<B
172 94 adantr φB<DA*
173 96 adantr φB<DB*
174 elioo2 A*B*ifCBB+D2C+D2ABifCBB+D2C+D2A<ifCBB+D2C+D2ifCBB+D2C+D2<B
175 172 173 174 syl2anc φB<DifCBB+D2C+D2ABifCBB+D2C+D2A<ifCBB+D2C+D2ifCBB+D2C+D2<B
176 171 175 mtbird φB<D¬ifCBB+D2C+D2AB
177 nelss ifCBB+D2C+D2CD¬ifCBB+D2C+D2AB¬CDAB
178 151 176 177 syl2anc φB<D¬CDAB
179 105 178 pm2.65da φ¬B<D
180 4 2 179 nltled φDB
181 104 180 jca φACDB