Metamath Proof Explorer


Theorem fourierdlem110

Description: The integral of a piecewise continuous periodic function F is unchanged if the domain is shifted by any value X . This lemma generalizes fourierdlem92 where the integral was shifted by the exact period. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses fourierdlem110.a φA
fourierdlem110.b φB
fourierdlem110.t T=BA
fourierdlem110.x φX
fourierdlem110.p P=mp0m|p0=Apm=Bi0..^mpi<pi+1
fourierdlem110.m φM
fourierdlem110.q φQPM
fourierdlem110.f φF:
fourierdlem110.fper φxFx+T=Fx
fourierdlem110.fcn φi0..^MFQiQi+1:QiQi+1cn
fourierdlem110.r φi0..^MRFQiQi+1limQi
fourierdlem110.l φi0..^MLFQiQi+1limQi+1
Assertion fourierdlem110 φAXBXFxdx=ABFxdx

Proof

Step Hyp Ref Expression
1 fourierdlem110.a φA
2 fourierdlem110.b φB
3 fourierdlem110.t T=BA
4 fourierdlem110.x φX
5 fourierdlem110.p P=mp0m|p0=Apm=Bi0..^mpi<pi+1
6 fourierdlem110.m φM
7 fourierdlem110.q φQPM
8 fourierdlem110.f φF:
9 fourierdlem110.fper φxFx+T=Fx
10 fourierdlem110.fcn φi0..^MFQiQi+1:QiQi+1cn
11 fourierdlem110.r φi0..^MRFQiQi+1limQi
12 fourierdlem110.l φi0..^MLFQiQi+1limQi+1
13 eqid mp0m|p0=AXpm=BXi0..^mpi<pi+1=mp0m|p0=AXpm=BXi0..^mpi<pi+1
14 oveq1 y=xy+kT=x+kT
15 14 eleq1d y=xy+kTranQx+kTranQ
16 15 rexbidv y=xky+kTranQkx+kTranQ
17 16 cbvrabv yAXBX|ky+kTranQ=xAXBX|kx+kTranQ
18 17 uneq2i AXBXyAXBX|ky+kTranQ=AXBXxAXBX|kx+kTranQ
19 oveq1 l=klT=kT
20 19 oveq2d l=ky+lT=y+kT
21 20 eleq1d l=ky+lTranQy+kTranQ
22 21 cbvrexvw ly+lTranQky+kTranQ
23 22 a1i yAXBXly+lTranQky+kTranQ
24 23 rabbiia yAXBX|ly+lTranQ=yAXBX|ky+kTranQ
25 24 uneq2i AXBXyAXBX|ly+lTranQ=AXBXyAXBX|ky+kTranQ
26 25 fveq2i AXBXyAXBX|ly+lTranQ=AXBXyAXBX|ky+kTranQ
27 26 oveq1i AXBXyAXBX|ly+lTranQ1=AXBXyAXBX|ky+kTranQ1
28 isoeq5 AXBXyAXBX|ly+lTranQ=AXBXyAXBX|ky+kTranQgIsom<,<0AXBXyAXBX|ly+lTranQ1AXBXyAXBX|ly+lTranQgIsom<,<0AXBXyAXBX|ly+lTranQ1AXBXyAXBX|ky+kTranQ
29 25 28 ax-mp gIsom<,<0AXBXyAXBX|ly+lTranQ1AXBXyAXBX|ly+lTranQgIsom<,<0AXBXyAXBX|ly+lTranQ1AXBXyAXBX|ky+kTranQ
30 isoeq1 g=fgIsom<,<0AXBXyAXBX|ly+lTranQ1AXBXyAXBX|ky+kTranQfIsom<,<0AXBXyAXBX|ly+lTranQ1AXBXyAXBX|ky+kTranQ
31 29 30 bitrid g=fgIsom<,<0AXBXyAXBX|ly+lTranQ1AXBXyAXBX|ly+lTranQfIsom<,<0AXBXyAXBX|ly+lTranQ1AXBXyAXBX|ky+kTranQ
32 31 cbviotavw ιg|gIsom<,<0AXBXyAXBX|ly+lTranQ1AXBXyAXBX|ly+lTranQ=ιf|fIsom<,<0AXBXyAXBX|ly+lTranQ1AXBXyAXBX|ky+kTranQ
33 id y=xy=x
34 oveq2 y=xBy=Bx
35 34 oveq1d y=xByT=BxT
36 35 fveq2d y=xByT=BxT
37 36 oveq1d y=xByTT=BxTT
38 33 37 oveq12d y=xy+ByTT=x+BxTT
39 38 cbvmptv yy+ByTT=xx+BxTT
40 eqeq1 y=wy=Bw=B
41 id y=wy=w
42 40 41 ifbieq2d y=wify=BAy=ifw=BAw
43 42 cbvmptv yABify=BAy=wABifw=BAw
44 fveq2 z=xyy+ByTTz=yy+ByTTx
45 44 fveq2d z=xyABify=BAyyy+ByTTz=yABify=BAyyy+ByTTx
46 45 breq2d z=xQjyABify=BAyyy+ByTTzQjyABify=BAyyy+ByTTx
47 46 rabbidv z=xj0..^M|QjyABify=BAyyy+ByTTz=j0..^M|QjyABify=BAyyy+ByTTx
48 47 supeq1d z=xsupj0..^M|QjyABify=BAyyy+ByTTz<=supj0..^M|QjyABify=BAyyy+ByTTx<
49 48 cbvmptv zsupj0..^M|QjyABify=BAyyy+ByTTz<=xsupj0..^M|QjyABify=BAyyy+ByTTx<
50 1 2 3 4 5 6 7 8 9 10 11 12 13 18 27 32 39 43 49 fourierdlem109 φAXBXFxdx=ABFxdx