Description: The integral of a piecewise continuous periodic function F is unchanged if the domain is shifted by any value X . This lemma generalizes fourierdlem92 where the integral was shifted by the exact period. (Contributed by Glauco Siliprandi, 11-Dec-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | fourierdlem110.a | |
|
fourierdlem110.b | |
||
fourierdlem110.t | |
||
fourierdlem110.x | |
||
fourierdlem110.p | |
||
fourierdlem110.m | |
||
fourierdlem110.q | |
||
fourierdlem110.f | |
||
fourierdlem110.fper | |
||
fourierdlem110.fcn | |
||
fourierdlem110.r | |
||
fourierdlem110.l | |
||
Assertion | fourierdlem110 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fourierdlem110.a | |
|
2 | fourierdlem110.b | |
|
3 | fourierdlem110.t | |
|
4 | fourierdlem110.x | |
|
5 | fourierdlem110.p | |
|
6 | fourierdlem110.m | |
|
7 | fourierdlem110.q | |
|
8 | fourierdlem110.f | |
|
9 | fourierdlem110.fper | |
|
10 | fourierdlem110.fcn | |
|
11 | fourierdlem110.r | |
|
12 | fourierdlem110.l | |
|
13 | eqid | |
|
14 | oveq1 | |
|
15 | 14 | eleq1d | |
16 | 15 | rexbidv | |
17 | 16 | cbvrabv | |
18 | 17 | uneq2i | |
19 | oveq1 | |
|
20 | 19 | oveq2d | |
21 | 20 | eleq1d | |
22 | 21 | cbvrexvw | |
23 | 22 | a1i | |
24 | 23 | rabbiia | |
25 | 24 | uneq2i | |
26 | 25 | fveq2i | |
27 | 26 | oveq1i | |
28 | isoeq5 | |
|
29 | 25 28 | ax-mp | |
30 | isoeq1 | |
|
31 | 29 30 | bitrid | |
32 | 31 | cbviotavw | |
33 | id | |
|
34 | oveq2 | |
|
35 | 34 | oveq1d | |
36 | 35 | fveq2d | |
37 | 36 | oveq1d | |
38 | 33 37 | oveq12d | |
39 | 38 | cbvmptv | |
40 | eqeq1 | |
|
41 | id | |
|
42 | 40 41 | ifbieq2d | |
43 | 42 | cbvmptv | |
44 | fveq2 | |
|
45 | 44 | fveq2d | |
46 | 45 | breq2d | |
47 | 46 | rabbidv | |
48 | 47 | supeq1d | |
49 | 48 | cbvmptv | |
50 | 1 2 3 4 5 6 7 8 9 10 11 12 13 18 27 32 39 43 49 | fourierdlem109 | |