Metamath Proof Explorer


Theorem fourierdlem4

Description: E is a function that maps any point to a periodic corresponding point in ( A , B ] . (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses fourierdlem4.a φA
fourierdlem4.b φB
fourierdlem4.altb φA<B
fourierdlem4.t T=BA
fourierdlem4.e E=xx+BxTT
Assertion fourierdlem4 φE:AB

Proof

Step Hyp Ref Expression
1 fourierdlem4.a φA
2 fourierdlem4.b φB
3 fourierdlem4.altb φA<B
4 fourierdlem4.t T=BA
5 fourierdlem4.e E=xx+BxTT
6 simpr φxx
7 2 adantr φxB
8 7 6 resubcld φxBx
9 2 1 resubcld φBA
10 4 9 eqeltrid φT
11 10 adantr φxT
12 4 a1i φT=BA
13 2 recnd φB
14 1 recnd φA
15 1 3 gtned φBA
16 13 14 15 subne0d φBA0
17 12 16 eqnetrd φT0
18 17 adantr φxT0
19 8 11 18 redivcld φxBxT
20 19 flcld φxBxT
21 20 zred φxBxT
22 21 11 remulcld φxBxTT
23 6 22 readdcld φxx+BxTT
24 1 adantr φxA
25 24 6 resubcld φxAx
26 25 11 18 redivcld φxAxT
27 26 11 remulcld φxAxTT
28 13 addridd φB+0=B
29 28 eqcomd φB=B+0
30 13 14 subcld φBA
31 30 subidd φB-A-BA=0
32 31 eqcomd φ0=B-A-BA
33 32 oveq2d φB+0=B+BA-BA
34 13 30 30 addsub12d φB+BA-BA=BA+B-BA
35 13 14 nncand φBBA=A
36 35 oveq2d φBA+B-BA=B-A+A
37 30 14 addcomd φB-A+A=A+B-A
38 12 eqcomd φBA=T
39 38 oveq2d φA+B-A=A+T
40 37 39 eqtrd φB-A+A=A+T
41 34 36 40 3eqtrd φB+BA-BA=A+T
42 29 33 41 3eqtrd φB=A+T
43 42 adantr φxB=A+T
44 43 oveq1d φxBx=A+T-x
45 14 adantr φxA
46 11 recnd φxT
47 6 recnd φxx
48 45 46 47 addsubd φxA+T-x=A-x+T
49 44 48 eqtrd φxBx=A-x+T
50 49 oveq1d φxBxT=A-x+TT
51 45 47 subcld φxAx
52 51 46 46 18 divdird φxA-x+TT=AxT+TT
53 4 30 eqeltrid φT
54 53 17 dividd φTT=1
55 54 adantr φxTT=1
56 55 oveq2d φxAxT+TT=AxT+1
57 50 52 56 3eqtrd φxBxT=AxT+1
58 57 fveq2d φxBxT=AxT+1
59 58 oveq1d φxBxTT=AxT+1T
60 59 22 eqeltrrd φxAxT+1T
61 peano2re AxTAxT+1
62 26 61 syl φxAxT+1
63 reflcl AxT+1AxT+1
64 62 63 syl φxAxT+1
65 1 2 posdifd φA<B0<BA
66 3 65 mpbid φ0<BA
67 66 12 breqtrrd φ0<T
68 10 67 elrpd φT+
69 68 adantr φxT+
70 flltp1 AxTAxT<AxT+1
71 26 70 syl φxAxT<AxT+1
72 1zzd φx1
73 fladdz AxT1AxT+1=AxT+1
74 26 72 73 syl2anc φxAxT+1=AxT+1
75 71 74 breqtrrd φxAxT<AxT+1
76 26 64 69 75 ltmul1dd φxAxTT<AxT+1T
77 27 60 6 76 ltadd2dd φxx+AxTT<x+AxT+1T
78 51 46 18 divcan1d φxAxTT=Ax
79 78 oveq2d φxx+AxTT=x+A-x
80 47 45 pncan3d φxx+A-x=A
81 79 80 eqtrd φxx+AxTT=A
82 59 oveq2d φxx+BxTT=x+AxT+1T
83 82 eqcomd φxx+AxT+1T=x+BxTT
84 77 81 83 3brtr3d φxA<x+BxTT
85 19 11 remulcld φxBxTT
86 flle BxTBxTBxT
87 19 86 syl φxBxTBxT
88 21 19 69 lemul1d φxBxTBxTBxTTBxTT
89 87 88 mpbid φxBxTTBxTT
90 22 85 6 89 leadd2dd φxx+BxTTx+BxTT
91 8 recnd φxBx
92 91 46 18 divcan1d φxBxTT=Bx
93 92 oveq2d φxx+BxTT=x+B-x
94 13 adantr φxB
95 47 94 pncan3d φxx+B-x=B
96 93 95 eqtrd φxx+BxTT=B
97 90 96 breqtrd φxx+BxTTB
98 24 rexrd φxA*
99 elioc2 A*Bx+BxTTABx+BxTTA<x+BxTTx+BxTTB
100 98 7 99 syl2anc φxx+BxTTABx+BxTTA<x+BxTTx+BxTTB
101 23 84 97 100 mpbir3and φxx+BxTTAB
102 101 5 fmptd φE:AB