| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fourierdlem4.a |  | 
						
							| 2 |  | fourierdlem4.b |  | 
						
							| 3 |  | fourierdlem4.altb |  | 
						
							| 4 |  | fourierdlem4.t |  | 
						
							| 5 |  | fourierdlem4.e |  | 
						
							| 6 |  | simpr |  | 
						
							| 7 | 2 | adantr |  | 
						
							| 8 | 7 6 | resubcld |  | 
						
							| 9 | 2 1 | resubcld |  | 
						
							| 10 | 4 9 | eqeltrid |  | 
						
							| 11 | 10 | adantr |  | 
						
							| 12 | 4 | a1i |  | 
						
							| 13 | 2 | recnd |  | 
						
							| 14 | 1 | recnd |  | 
						
							| 15 | 1 3 | gtned |  | 
						
							| 16 | 13 14 15 | subne0d |  | 
						
							| 17 | 12 16 | eqnetrd |  | 
						
							| 18 | 17 | adantr |  | 
						
							| 19 | 8 11 18 | redivcld |  | 
						
							| 20 | 19 | flcld |  | 
						
							| 21 | 20 | zred |  | 
						
							| 22 | 21 11 | remulcld |  | 
						
							| 23 | 6 22 | readdcld |  | 
						
							| 24 | 1 | adantr |  | 
						
							| 25 | 24 6 | resubcld |  | 
						
							| 26 | 25 11 18 | redivcld |  | 
						
							| 27 | 26 11 | remulcld |  | 
						
							| 28 | 13 | addridd |  | 
						
							| 29 | 28 | eqcomd |  | 
						
							| 30 | 13 14 | subcld |  | 
						
							| 31 | 30 | subidd |  | 
						
							| 32 | 31 | eqcomd |  | 
						
							| 33 | 32 | oveq2d |  | 
						
							| 34 | 13 30 30 | addsub12d |  | 
						
							| 35 | 13 14 | nncand |  | 
						
							| 36 | 35 | oveq2d |  | 
						
							| 37 | 30 14 | addcomd |  | 
						
							| 38 | 12 | eqcomd |  | 
						
							| 39 | 38 | oveq2d |  | 
						
							| 40 | 37 39 | eqtrd |  | 
						
							| 41 | 34 36 40 | 3eqtrd |  | 
						
							| 42 | 29 33 41 | 3eqtrd |  | 
						
							| 43 | 42 | adantr |  | 
						
							| 44 | 43 | oveq1d |  | 
						
							| 45 | 14 | adantr |  | 
						
							| 46 | 11 | recnd |  | 
						
							| 47 | 6 | recnd |  | 
						
							| 48 | 45 46 47 | addsubd |  | 
						
							| 49 | 44 48 | eqtrd |  | 
						
							| 50 | 49 | oveq1d |  | 
						
							| 51 | 45 47 | subcld |  | 
						
							| 52 | 51 46 46 18 | divdird |  | 
						
							| 53 | 4 30 | eqeltrid |  | 
						
							| 54 | 53 17 | dividd |  | 
						
							| 55 | 54 | adantr |  | 
						
							| 56 | 55 | oveq2d |  | 
						
							| 57 | 50 52 56 | 3eqtrd |  | 
						
							| 58 | 57 | fveq2d |  | 
						
							| 59 | 58 | oveq1d |  | 
						
							| 60 | 59 22 | eqeltrrd |  | 
						
							| 61 |  | peano2re |  | 
						
							| 62 | 26 61 | syl |  | 
						
							| 63 |  | reflcl |  | 
						
							| 64 | 62 63 | syl |  | 
						
							| 65 | 1 2 | posdifd |  | 
						
							| 66 | 3 65 | mpbid |  | 
						
							| 67 | 66 12 | breqtrrd |  | 
						
							| 68 | 10 67 | elrpd |  | 
						
							| 69 | 68 | adantr |  | 
						
							| 70 |  | flltp1 |  | 
						
							| 71 | 26 70 | syl |  | 
						
							| 72 |  | 1zzd |  | 
						
							| 73 |  | fladdz |  | 
						
							| 74 | 26 72 73 | syl2anc |  | 
						
							| 75 | 71 74 | breqtrrd |  | 
						
							| 76 | 26 64 69 75 | ltmul1dd |  | 
						
							| 77 | 27 60 6 76 | ltadd2dd |  | 
						
							| 78 | 51 46 18 | divcan1d |  | 
						
							| 79 | 78 | oveq2d |  | 
						
							| 80 | 47 45 | pncan3d |  | 
						
							| 81 | 79 80 | eqtrd |  | 
						
							| 82 | 59 | oveq2d |  | 
						
							| 83 | 82 | eqcomd |  | 
						
							| 84 | 77 81 83 | 3brtr3d |  | 
						
							| 85 | 19 11 | remulcld |  | 
						
							| 86 |  | flle |  | 
						
							| 87 | 19 86 | syl |  | 
						
							| 88 | 21 19 69 | lemul1d |  | 
						
							| 89 | 87 88 | mpbid |  | 
						
							| 90 | 22 85 6 89 | leadd2dd |  | 
						
							| 91 | 8 | recnd |  | 
						
							| 92 | 91 46 18 | divcan1d |  | 
						
							| 93 | 92 | oveq2d |  | 
						
							| 94 | 13 | adantr |  | 
						
							| 95 | 47 94 | pncan3d |  | 
						
							| 96 | 93 95 | eqtrd |  | 
						
							| 97 | 90 96 | breqtrd |  | 
						
							| 98 | 24 | rexrd |  | 
						
							| 99 |  | elioc2 |  | 
						
							| 100 | 98 7 99 | syl2anc |  | 
						
							| 101 | 23 84 97 100 | mpbir3and |  | 
						
							| 102 | 101 5 | fmptd |  |