Metamath Proof Explorer


Theorem fppr2odd

Description: A Fermat pseudoprime to the base 2 is odd. (Contributed by AV, 5-Jun-2023)

Ref Expression
Assertion fppr2odd XFPPr2XOdd

Proof

Step Hyp Ref Expression
1 2nn 2
2 fpprel 2XFPPr2X4X2X1modX=1
3 1 2 ax-mp XFPPr2X4X2X1modX=1
4 eluz4nn X4X
5 4 adantr X42X1modX=1X
6 eluzelz X4X
7 zeo2ALTV XXEven¬XOdd
8 6 7 syl X4XEven¬XOdd
9 8 adantr X42X1modX=1XEven¬XOdd
10 9 biimprd X42X1modX=1¬XOddXEven
11 nnennexALTV XXEvenyX=2y
12 5 10 11 syl6an X42X1modX=1¬XOddyX=2y
13 oveq1 X=2yX1=2y1
14 13 oveq2d X=2y2X1=22y1
15 id X=2yX=2y
16 14 15 oveq12d X=2y2X1modX=22y1mod2y
17 16 eqeq1d X=2y2X1modX=122y1mod2y=1
18 17 adantl X4yX=2y2X1modX=122y1mod2y=1
19 2z 2
20 1 a1i y2
21 id yy
22 20 21 nnmulcld y2y
23 nnm1nn0 2y2y10
24 22 23 syl y2y10
25 zexpcl 22y1022y1
26 19 24 25 sylancr y22y1
27 22 nnrpd y2y+
28 modmuladdim 22y12y+22y1mod2y=1m22y1=m2y+1
29 26 27 28 syl2anc y22y1mod2y=1m22y1=m2y+1
30 24 adantr ym2y10
31 19 30 25 sylancr ym22y1
32 31 zcnd ym22y1
33 zcn mm
34 33 adantl ymm
35 2cnd ym2
36 nncn yy
37 36 adantr ymy
38 35 37 mulcld ym2y
39 34 38 mulcld ymm2y
40 1cnd ym1
41 subadd 22y1m2y122y1m2y=1m2y+1=22y1
42 eqcom m2y+1=22y122y1=m2y+1
43 41 42 bitrdi 22y1m2y122y1m2y=122y1=m2y+1
44 32 39 40 43 syl3anc ym22y1m2y=122y1=m2y+1
45 2cnd y2
46 45 36 mulcld y2y
47 1cnd y1
48 46 47 subcld y2y1
49 48 adantr ym2y1
50 npcan1 2y12y1-1+1=2y1
51 49 50 syl ym2y1-1+1=2y1
52 51 eqcomd ym2y1=2y1-1+1
53 52 oveq2d ym22y1=22y1-1+1
54 2t1e2 21=2
55 54 eqcomi 2=21
56 55 oveq2i 2y2=2y21
57 sub1m1 2y2y-1-1=2y2
58 38 57 syl ym2y-1-1=2y2
59 35 37 40 subdid ym2y1=2y21
60 56 58 59 3eqtr4a ym2y-1-1=2y1
61 2nn0 20
62 61 a1i ym20
63 nnm1nn0 yy10
64 63 adantr ymy10
65 62 64 nn0mulcld ym2y10
66 60 65 eqeltrd ym2y-1-10
67 35 66 expp1d ym22y1-1+1=22y-1-12
68 35 66 expcld ym22y-1-1
69 68 35 mulcomd ym22y-1-12=222y-1-1
70 67 69 eqtrd ym22y1-1+1=222y-1-1
71 53 70 eqtrd ym22y1=222y-1-1
72 34 35 37 mul12d ymm2y=2my
73 71 72 oveq12d ym22y1m2y=222y-1-12my
74 34 37 mulcld ymmy
75 35 68 74 subdid ym222y-1-1my=222y-1-12my
76 75 eqcomd ym222y-1-12my=222y-1-1my
77 73 76 eqtrd ym22y1m2y=222y-1-1my
78 77 eqeq1d ym22y1m2y=1222y-1-1my=1
79 zexpcl 22y-1-1022y-1-1
80 19 66 79 sylancr ym22y-1-1
81 simpr ymm
82 nnz yy
83 82 adantr ymy
84 81 83 zmulcld ymmy
85 80 84 zsubcld ym22y-1-1my
86 m2even 22y-1-1my222y-1-1myEven
87 85 86 syl ym222y-1-1myEven
88 1oddALTV 1Odd
89 zneoALTV 222y-1-1myEven1Odd222y-1-1my1
90 87 88 89 sylancl ym222y-1-1my1
91 eqneqall 222y-1-1my=1222y-1-1my1XOdd
92 90 91 syl5com ym222y-1-1my=1XOdd
93 78 92 sylbid ym22y1m2y=1XOdd
94 44 93 sylbird ym22y1=m2y+1XOdd
95 94 rexlimdva ym22y1=m2y+1XOdd
96 29 95 syld y22y1mod2y=1XOdd
97 96 adantl X4y22y1mod2y=1XOdd
98 97 adantr X4yX=2y22y1mod2y=1XOdd
99 18 98 sylbid X4yX=2y2X1modX=1XOdd
100 99 ex X4yX=2y2X1modX=1XOdd
101 100 rexlimdva X4yX=2y2X1modX=1XOdd
102 101 com23 X42X1modX=1yX=2yXOdd
103 102 imp X42X1modX=1yX=2yXOdd
104 12 103 syld X42X1modX=1¬XOddXOdd
105 104 3adant2 X4X2X1modX=1¬XOddXOdd
106 3 105 sylbi XFPPr2¬XOddXOdd
107 106 pm2.18d XFPPr2XOdd