Metamath Proof Explorer


Theorem frlmup2

Description: The evaluation map has the intended behavior on the unit vectors. (Contributed by Stefan O'Rear, 7-Feb-2015) (Proof shortened by AV, 21-Jul-2019)

Ref Expression
Hypotheses frlmup.f F=RfreeLModI
frlmup.b B=BaseF
frlmup.c C=BaseT
frlmup.v ·˙=T
frlmup.e E=xBTx·˙fA
frlmup.t φTLMod
frlmup.i φIX
frlmup.r φR=ScalarT
frlmup.a φA:IC
frlmup.y φYI
frlmup.u U=RunitVecI
Assertion frlmup2 φEUY=AY

Proof

Step Hyp Ref Expression
1 frlmup.f F=RfreeLModI
2 frlmup.b B=BaseF
3 frlmup.c C=BaseT
4 frlmup.v ·˙=T
5 frlmup.e E=xBTx·˙fA
6 frlmup.t φTLMod
7 frlmup.i φIX
8 frlmup.r φR=ScalarT
9 frlmup.a φA:IC
10 frlmup.y φYI
11 frlmup.u U=RunitVecI
12 eqid ScalarT=ScalarT
13 12 lmodring TLModScalarTRing
14 6 13 syl φScalarTRing
15 8 14 eqeltrd φRRing
16 11 1 2 uvcff RRingIXU:IB
17 15 7 16 syl2anc φU:IB
18 17 10 ffvelcdmd φUYB
19 oveq1 x=UYx·˙fA=UY·˙fA
20 19 oveq2d x=UYTx·˙fA=TUY·˙fA
21 ovex TUY·˙fAV
22 20 5 21 fvmpt UYBEUY=TUY·˙fA
23 18 22 syl φEUY=TUY·˙fA
24 eqid 0T=0T
25 lmodcmn TLModTCMnd
26 cmnmnd TCMndTMnd
27 6 25 26 3syl φTMnd
28 eqid BaseScalarT=BaseScalarT
29 eqid BaseR=BaseR
30 1 29 2 frlmbasf IXUYBUY:IBaseR
31 7 18 30 syl2anc φUY:IBaseR
32 8 fveq2d φBaseR=BaseScalarT
33 32 feq3d φUY:IBaseRUY:IBaseScalarT
34 31 33 mpbid φUY:IBaseScalarT
35 12 28 4 3 6 34 9 7 lcomf φUY·˙fA:IC
36 31 ffnd φUYFnI
37 36 adantr φxIYUYFnI
38 9 ffnd φAFnI
39 38 adantr φxIYAFnI
40 7 adantr φxIYIX
41 eldifi xIYxI
42 41 adantl φxIYxI
43 fnfvof UYFnIAFnIIXxIUY·˙fAx=UYx·˙Ax
44 37 39 40 42 43 syl22anc φxIYUY·˙fAx=UYx·˙Ax
45 15 adantr φxIYRRing
46 10 adantr φxIYYI
47 eldifsni xIYxY
48 47 necomd xIYYx
49 48 adantl φxIYYx
50 eqid 0R=0R
51 11 45 40 46 42 49 50 uvcvv0 φxIYUYx=0R
52 8 fveq2d φ0R=0ScalarT
53 52 adantr φxIY0R=0ScalarT
54 51 53 eqtrd φxIYUYx=0ScalarT
55 54 oveq1d φxIYUYx·˙Ax=0ScalarT·˙Ax
56 6 adantr φxIYTLMod
57 ffvelcdm A:ICxIAxC
58 9 41 57 syl2an φxIYAxC
59 eqid 0ScalarT=0ScalarT
60 3 12 4 59 24 lmod0vs TLModAxC0ScalarT·˙Ax=0T
61 56 58 60 syl2anc φxIY0ScalarT·˙Ax=0T
62 44 55 61 3eqtrd φxIYUY·˙fAx=0T
63 35 62 suppss φUY·˙fAsupp0TY
64 3 24 27 7 10 35 63 gsumpt φTUY·˙fA=UY·˙fAY
65 fnfvof UYFnIAFnIIXYIUY·˙fAY=UYY·˙AY
66 36 38 7 10 65 syl22anc φUY·˙fAY=UYY·˙AY
67 eqid 1R=1R
68 11 15 7 10 67 uvcvv1 φUYY=1R
69 8 fveq2d φ1R=1ScalarT
70 68 69 eqtrd φUYY=1ScalarT
71 70 oveq1d φUYY·˙AY=1ScalarT·˙AY
72 9 10 ffvelcdmd φAYC
73 eqid 1ScalarT=1ScalarT
74 3 12 4 73 lmodvs1 TLModAYC1ScalarT·˙AY=AY
75 6 72 74 syl2anc φ1ScalarT·˙AY=AY
76 66 71 75 3eqtrd φUY·˙fAY=AY
77 23 64 76 3eqtrd φEUY=AY