Metamath Proof Explorer


Theorem ftc1anclem2

Description: Lemma for ftc1anc - restriction of an integrable function to the absolute value of its real or imaginary part. (Contributed by Brendan Leahy, 19-Jun-2018) (Revised by Brendan Leahy, 8-Aug-2018)

Ref Expression
Assertion ftc1anclem2 F:AF𝐿1G2tiftAGFt0

Proof

Step Hyp Ref Expression
1 elpri GG=G=
2 fveq1 G=GFt=Ft
3 2 fveq2d G=GFt=Ft
4 3 ifeq1d G=iftAGFt0=iftAFt0
5 4 mpteq2dv G=tiftAGFt0=tiftAFt0
6 5 fveq2d G=2tiftAGFt0=2tiftAFt0
7 6 adantl F:AF𝐿1G=2tiftAGFt0=2tiftAFt0
8 ffvelcdm F:AtAFt
9 8 recld F:AtAFt
10 9 adantlr F:AF𝐿1tAFt
11 simpl F:AF𝐿1F:A
12 11 feqmptd F:AF𝐿1F=tAFt
13 simpr F:AF𝐿1F𝐿1
14 12 13 eqeltrrd F:AF𝐿1tAFt𝐿1
15 8 iblcn F:AtAFt𝐿1tAFt𝐿1tAFt𝐿1
16 15 biimpa F:AtAFt𝐿1tAFt𝐿1tAFt𝐿1
17 14 16 syldan F:AF𝐿1tAFt𝐿1tAFt𝐿1
18 17 simpld F:AF𝐿1tAFt𝐿1
19 9 recnd F:AtAFt
20 eqidd F:AtAFt=tAFt
21 absf abs:
22 21 a1i F:Aabs:
23 22 feqmptd F:Aabs=xx
24 fveq2 x=Ftx=Ft
25 19 20 23 24 fmptco F:AabstAFt=tAFt
26 25 adantr F:AF𝐿1abstAFt=tAFt
27 9 fmpttd F:AtAFt:A
28 27 adantr F:AF𝐿1tAFt:A
29 iblmbf F𝐿1FMblFn
30 29 adantl F:AF𝐿1FMblFn
31 12 30 eqeltrrd F:AF𝐿1tAFtMblFn
32 8 ismbfcn2 F:AtAFtMblFntAFtMblFntAFtMblFn
33 32 biimpa F:AtAFtMblFntAFtMblFntAFtMblFn
34 31 33 syldan F:AF𝐿1tAFtMblFntAFtMblFn
35 34 simpld F:AF𝐿1tAFtMblFn
36 ftc1anclem1 tAFt:AtAFtMblFnabstAFtMblFn
37 28 35 36 syl2anc F:AF𝐿1abstAFtMblFn
38 26 37 eqeltrrd F:AF𝐿1tAFtMblFn
39 10 18 38 iblabsnc F:AF𝐿1tAFt𝐿1
40 19 abscld F:AtAFt
41 19 absge0d F:AtA0Ft
42 40 41 iblpos F:AtAFt𝐿1tAFtMblFn2tiftAFt0
43 42 adantr F:AF𝐿1tAFt𝐿1tAFtMblFn2tiftAFt0
44 39 43 mpbid F:AF𝐿1tAFtMblFn2tiftAFt0
45 44 simprd F:AF𝐿12tiftAFt0
46 45 adantr F:AF𝐿1G=2tiftAFt0
47 7 46 eqeltrd F:AF𝐿1G=2tiftAGFt0
48 fveq1 G=GFt=Ft
49 48 fveq2d G=GFt=Ft
50 49 ifeq1d G=iftAGFt0=iftAFt0
51 50 mpteq2dv G=tiftAGFt0=tiftAFt0
52 51 fveq2d G=2tiftAGFt0=2tiftAFt0
53 52 adantl F:AF𝐿1G=2tiftAGFt0=2tiftAFt0
54 8 imcld F:AtAFt
55 54 recnd F:AtAFt
56 55 adantlr F:AF𝐿1tAFt
57 17 simprd F:AF𝐿1tAFt𝐿1
58 eqidd F:AtAFt=tAFt
59 fveq2 x=Ftx=Ft
60 55 58 23 59 fmptco F:AabstAFt=tAFt
61 60 adantr F:AF𝐿1abstAFt=tAFt
62 54 fmpttd F:AtAFt:A
63 62 adantr F:AF𝐿1tAFt:A
64 34 simprd F:AF𝐿1tAFtMblFn
65 ftc1anclem1 tAFt:AtAFtMblFnabstAFtMblFn
66 63 64 65 syl2anc F:AF𝐿1abstAFtMblFn
67 61 66 eqeltrrd F:AF𝐿1tAFtMblFn
68 56 57 67 iblabsnc F:AF𝐿1tAFt𝐿1
69 55 abscld F:AtAFt
70 55 absge0d F:AtA0Ft
71 69 70 iblpos F:AtAFt𝐿1tAFtMblFn2tiftAFt0
72 71 adantr F:AF𝐿1tAFt𝐿1tAFtMblFn2tiftAFt0
73 68 72 mpbid F:AF𝐿1tAFtMblFn2tiftAFt0
74 73 simprd F:AF𝐿12tiftAFt0
75 74 adantr F:AF𝐿1G=2tiftAFt0
76 53 75 eqeltrd F:AF𝐿1G=2tiftAGFt0
77 47 76 jaodan F:AF𝐿1G=G=2tiftAGFt0
78 1 77 sylan2 F:AF𝐿1G2tiftAGFt0
79 78 3impa F:AF𝐿1G2tiftAGFt0