Step |
Hyp |
Ref |
Expression |
1 |
|
elpri |
|
2 |
|
fveq1 |
|
3 |
2
|
fveq2d |
|
4 |
3
|
ifeq1d |
|
5 |
4
|
mpteq2dv |
|
6 |
5
|
fveq2d |
|
7 |
6
|
adantl |
|
8 |
|
ffvelrn |
|
9 |
8
|
recld |
|
10 |
9
|
adantlr |
|
11 |
|
simpl |
|
12 |
11
|
feqmptd |
|
13 |
|
simpr |
|
14 |
12 13
|
eqeltrrd |
|
15 |
8
|
iblcn |
|
16 |
15
|
biimpa |
|
17 |
14 16
|
syldan |
|
18 |
17
|
simpld |
|
19 |
9
|
recnd |
|
20 |
|
eqidd |
|
21 |
|
absf |
|
22 |
21
|
a1i |
|
23 |
22
|
feqmptd |
|
24 |
|
fveq2 |
|
25 |
19 20 23 24
|
fmptco |
|
26 |
25
|
adantr |
|
27 |
9
|
fmpttd |
|
28 |
27
|
adantr |
|
29 |
|
iblmbf |
|
30 |
29
|
adantl |
|
31 |
12 30
|
eqeltrrd |
|
32 |
8
|
ismbfcn2 |
|
33 |
32
|
biimpa |
|
34 |
31 33
|
syldan |
|
35 |
34
|
simpld |
|
36 |
|
ftc1anclem1 |
|
37 |
28 35 36
|
syl2anc |
|
38 |
26 37
|
eqeltrrd |
|
39 |
10 18 38
|
iblabsnc |
|
40 |
19
|
abscld |
|
41 |
19
|
absge0d |
|
42 |
40 41
|
iblpos |
|
43 |
42
|
adantr |
|
44 |
39 43
|
mpbid |
|
45 |
44
|
simprd |
|
46 |
45
|
adantr |
|
47 |
7 46
|
eqeltrd |
|
48 |
|
fveq1 |
|
49 |
48
|
fveq2d |
|
50 |
49
|
ifeq1d |
|
51 |
50
|
mpteq2dv |
|
52 |
51
|
fveq2d |
|
53 |
52
|
adantl |
|
54 |
8
|
imcld |
|
55 |
54
|
recnd |
|
56 |
55
|
adantlr |
|
57 |
17
|
simprd |
|
58 |
|
eqidd |
|
59 |
|
fveq2 |
|
60 |
55 58 23 59
|
fmptco |
|
61 |
60
|
adantr |
|
62 |
54
|
fmpttd |
|
63 |
62
|
adantr |
|
64 |
34
|
simprd |
|
65 |
|
ftc1anclem1 |
|
66 |
63 64 65
|
syl2anc |
|
67 |
61 66
|
eqeltrrd |
|
68 |
56 57 67
|
iblabsnc |
|
69 |
55
|
abscld |
|
70 |
55
|
absge0d |
|
71 |
69 70
|
iblpos |
|
72 |
71
|
adantr |
|
73 |
68 72
|
mpbid |
|
74 |
73
|
simprd |
|
75 |
74
|
adantr |
|
76 |
53 75
|
eqeltrd |
|
77 |
47 76
|
jaodan |
|
78 |
1 77
|
sylan2 |
|
79 |
78
|
3impa |
|