| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elpri |  | 
						
							| 2 |  | fveq1 |  | 
						
							| 3 | 2 | fveq2d |  | 
						
							| 4 | 3 | ifeq1d |  | 
						
							| 5 | 4 | mpteq2dv |  | 
						
							| 6 | 5 | fveq2d |  | 
						
							| 7 | 6 | adantl |  | 
						
							| 8 |  | ffvelcdm |  | 
						
							| 9 | 8 | recld |  | 
						
							| 10 | 9 | adantlr |  | 
						
							| 11 |  | simpl |  | 
						
							| 12 | 11 | feqmptd |  | 
						
							| 13 |  | simpr |  | 
						
							| 14 | 12 13 | eqeltrrd |  | 
						
							| 15 | 8 | iblcn |  | 
						
							| 16 | 15 | biimpa |  | 
						
							| 17 | 14 16 | syldan |  | 
						
							| 18 | 17 | simpld |  | 
						
							| 19 | 9 | recnd |  | 
						
							| 20 |  | eqidd |  | 
						
							| 21 |  | absf |  | 
						
							| 22 | 21 | a1i |  | 
						
							| 23 | 22 | feqmptd |  | 
						
							| 24 |  | fveq2 |  | 
						
							| 25 | 19 20 23 24 | fmptco |  | 
						
							| 26 | 25 | adantr |  | 
						
							| 27 | 9 | fmpttd |  | 
						
							| 28 | 27 | adantr |  | 
						
							| 29 |  | iblmbf |  | 
						
							| 30 | 29 | adantl |  | 
						
							| 31 | 12 30 | eqeltrrd |  | 
						
							| 32 | 8 | ismbfcn2 |  | 
						
							| 33 | 32 | biimpa |  | 
						
							| 34 | 31 33 | syldan |  | 
						
							| 35 | 34 | simpld |  | 
						
							| 36 |  | ftc1anclem1 |  | 
						
							| 37 | 28 35 36 | syl2anc |  | 
						
							| 38 | 26 37 | eqeltrrd |  | 
						
							| 39 | 10 18 38 | iblabsnc |  | 
						
							| 40 | 19 | abscld |  | 
						
							| 41 | 19 | absge0d |  | 
						
							| 42 | 40 41 | iblpos |  | 
						
							| 43 | 42 | adantr |  | 
						
							| 44 | 39 43 | mpbid |  | 
						
							| 45 | 44 | simprd |  | 
						
							| 46 | 45 | adantr |  | 
						
							| 47 | 7 46 | eqeltrd |  | 
						
							| 48 |  | fveq1 |  | 
						
							| 49 | 48 | fveq2d |  | 
						
							| 50 | 49 | ifeq1d |  | 
						
							| 51 | 50 | mpteq2dv |  | 
						
							| 52 | 51 | fveq2d |  | 
						
							| 53 | 52 | adantl |  | 
						
							| 54 | 8 | imcld |  | 
						
							| 55 | 54 | recnd |  | 
						
							| 56 | 55 | adantlr |  | 
						
							| 57 | 17 | simprd |  | 
						
							| 58 |  | eqidd |  | 
						
							| 59 |  | fveq2 |  | 
						
							| 60 | 55 58 23 59 | fmptco |  | 
						
							| 61 | 60 | adantr |  | 
						
							| 62 | 54 | fmpttd |  | 
						
							| 63 | 62 | adantr |  | 
						
							| 64 | 34 | simprd |  | 
						
							| 65 |  | ftc1anclem1 |  | 
						
							| 66 | 63 64 65 | syl2anc |  | 
						
							| 67 | 61 66 | eqeltrrd |  | 
						
							| 68 | 56 57 67 | iblabsnc |  | 
						
							| 69 | 55 | abscld |  | 
						
							| 70 | 55 | absge0d |  | 
						
							| 71 | 69 70 | iblpos |  | 
						
							| 72 | 71 | adantr |  | 
						
							| 73 | 68 72 | mpbid |  | 
						
							| 74 | 73 | simprd |  | 
						
							| 75 | 74 | adantr |  | 
						
							| 76 | 53 75 | eqeltrd |  | 
						
							| 77 | 47 76 | jaodan |  | 
						
							| 78 | 1 77 | sylan2 |  | 
						
							| 79 | 78 | 3impa |  |