Metamath Proof Explorer


Theorem fucidcl

Description: The identity natural transformation. (Contributed by Mario Carneiro, 6-Jan-2017)

Ref Expression
Hypotheses fucidcl.q Q=CFuncCatD
fucidcl.n N=CNatD
fucidcl.x 1˙=IdD
fucidcl.f φFCFuncD
Assertion fucidcl φ1˙1stFFNF

Proof

Step Hyp Ref Expression
1 fucidcl.q Q=CFuncCatD
2 fucidcl.n N=CNatD
3 fucidcl.x 1˙=IdD
4 fucidcl.f φFCFuncD
5 funcrcl FCFuncDCCatDCat
6 4 5 syl φCCatDCat
7 6 simprd φDCat
8 eqid BaseD=BaseD
9 8 3 cidfn DCat1˙FnBaseD
10 7 9 syl φ1˙FnBaseD
11 dffn2 1˙FnBaseD1˙:BaseDV
12 10 11 sylib φ1˙:BaseDV
13 eqid BaseC=BaseC
14 relfunc RelCFuncD
15 1st2ndbr RelCFuncDFCFuncD1stFCFuncD2ndF
16 14 4 15 sylancr φ1stFCFuncD2ndF
17 13 8 16 funcf1 φ1stF:BaseCBaseD
18 fcompt 1˙:BaseDV1stF:BaseCBaseD1˙1stF=xBaseC1˙1stFx
19 12 17 18 syl2anc φ1˙1stF=xBaseC1˙1stFx
20 eqid HomD=HomD
21 7 adantr φxBaseCDCat
22 17 ffvelcdmda φxBaseC1stFxBaseD
23 8 20 3 21 22 catidcl φxBaseC1˙1stFx1stFxHomD1stFx
24 23 ralrimiva φxBaseC1˙1stFx1stFxHomD1stFx
25 fvex BaseCV
26 mptelixpg BaseCVxBaseC1˙1stFxxBaseC1stFxHomD1stFxxBaseC1˙1stFx1stFxHomD1stFx
27 25 26 ax-mp xBaseC1˙1stFxxBaseC1stFxHomD1stFxxBaseC1˙1stFx1stFxHomD1stFx
28 24 27 sylibr φxBaseC1˙1stFxxBaseC1stFxHomD1stFx
29 19 28 eqeltrd φ1˙1stFxBaseC1stFxHomD1stFx
30 7 adantr φxBaseCyBaseCfxHomCyDCat
31 simpr1 φxBaseCyBaseCfxHomCyxBaseC
32 31 22 syldan φxBaseCyBaseCfxHomCy1stFxBaseD
33 eqid compD=compD
34 17 adantr φxBaseCyBaseCfxHomCy1stF:BaseCBaseD
35 simpr2 φxBaseCyBaseCfxHomCyyBaseC
36 34 35 ffvelcdmd φxBaseCyBaseCfxHomCy1stFyBaseD
37 eqid HomC=HomC
38 16 adantr φxBaseCyBaseCfxHomCy1stFCFuncD2ndF
39 13 37 20 38 31 35 funcf2 φxBaseCyBaseCfxHomCyx2ndFy:xHomCy1stFxHomD1stFy
40 simpr3 φxBaseCyBaseCfxHomCyfxHomCy
41 39 40 ffvelcdmd φxBaseCyBaseCfxHomCyx2ndFyf1stFxHomD1stFy
42 8 20 3 30 32 33 36 41 catlid φxBaseCyBaseCfxHomCy1˙1stFy1stFx1stFycompD1stFyx2ndFyf=x2ndFyf
43 8 20 3 30 32 33 36 41 catrid φxBaseCyBaseCfxHomCyx2ndFyf1stFx1stFxcompD1stFy1˙1stFx=x2ndFyf
44 42 43 eqtr4d φxBaseCyBaseCfxHomCy1˙1stFy1stFx1stFycompD1stFyx2ndFyf=x2ndFyf1stFx1stFxcompD1stFy1˙1stFx
45 fvco3 1stF:BaseCBaseDyBaseC1˙1stFy=1˙1stFy
46 34 35 45 syl2anc φxBaseCyBaseCfxHomCy1˙1stFy=1˙1stFy
47 46 oveq1d φxBaseCyBaseCfxHomCy1˙1stFy1stFx1stFycompD1stFyx2ndFyf=1˙1stFy1stFx1stFycompD1stFyx2ndFyf
48 fvco3 1stF:BaseCBaseDxBaseC1˙1stFx=1˙1stFx
49 34 31 48 syl2anc φxBaseCyBaseCfxHomCy1˙1stFx=1˙1stFx
50 49 oveq2d φxBaseCyBaseCfxHomCyx2ndFyf1stFx1stFxcompD1stFy1˙1stFx=x2ndFyf1stFx1stFxcompD1stFy1˙1stFx
51 44 47 50 3eqtr4d φxBaseCyBaseCfxHomCy1˙1stFy1stFx1stFycompD1stFyx2ndFyf=x2ndFyf1stFx1stFxcompD1stFy1˙1stFx
52 51 ralrimivvva φxBaseCyBaseCfxHomCy1˙1stFy1stFx1stFycompD1stFyx2ndFyf=x2ndFyf1stFx1stFxcompD1stFy1˙1stFx
53 2 13 37 20 33 4 4 isnat2 φ1˙1stFFNF1˙1stFxBaseC1stFxHomD1stFxxBaseCyBaseCfxHomCy1˙1stFy1stFx1stFycompD1stFyx2ndFyf=x2ndFyf1stFx1stFxcompD1stFy1˙1stFx
54 29 52 53 mpbir2and φ1˙1stFFNF