Metamath Proof Explorer


Theorem funcestrcsetclem9

Description: Lemma 9 for funcestrcsetc . (Contributed by AV, 23-Mar-2020)

Ref Expression
Hypotheses funcestrcsetc.e E=ExtStrCatU
funcestrcsetc.s S=SetCatU
funcestrcsetc.b B=BaseE
funcestrcsetc.c C=BaseS
funcestrcsetc.u φUWUni
funcestrcsetc.f φF=xBBasex
funcestrcsetc.g φG=xB,yBIBaseyBasex
Assertion funcestrcsetclem9 φXBYBZBHXHomEYKYHomEZXGZKXYcompEZH=YGZKFXFYcompSFZXGYH

Proof

Step Hyp Ref Expression
1 funcestrcsetc.e E=ExtStrCatU
2 funcestrcsetc.s S=SetCatU
3 funcestrcsetc.b B=BaseE
4 funcestrcsetc.c C=BaseS
5 funcestrcsetc.u φUWUni
6 funcestrcsetc.f φF=xBBasex
7 funcestrcsetc.g φG=xB,yBIBaseyBasex
8 5 adantr φXBYBZBUWUni
9 eqid HomE=HomE
10 1 5 estrcbas φU=BaseE
11 3 10 eqtr4id φB=U
12 11 eleq2d φXBXU
13 12 biimpcd XBφXU
14 13 3ad2ant1 XBYBZBφXU
15 14 impcom φXBYBZBXU
16 11 eleq2d φYBYU
17 16 biimpcd YBφYU
18 17 3ad2ant2 XBYBZBφYU
19 18 impcom φXBYBZBYU
20 eqid BaseX=BaseX
21 eqid BaseY=BaseY
22 1 8 9 15 19 20 21 estrchom φXBYBZBXHomEY=BaseYBaseX
23 22 eleq2d φXBYBZBHXHomEYHBaseYBaseX
24 11 eleq2d φZBZU
25 24 biimpcd ZBφZU
26 25 3ad2ant3 XBYBZBφZU
27 26 impcom φXBYBZBZU
28 eqid BaseZ=BaseZ
29 1 8 9 19 27 21 28 estrchom φXBYBZBYHomEZ=BaseZBaseY
30 29 eleq2d φXBYBZBKYHomEZKBaseZBaseY
31 23 30 anbi12d φXBYBZBHXHomEYKYHomEZHBaseYBaseXKBaseZBaseY
32 elmapi KBaseZBaseYK:BaseYBaseZ
33 elmapi HBaseYBaseXH:BaseXBaseY
34 fco K:BaseYBaseZH:BaseXBaseYKH:BaseXBaseZ
35 32 33 34 syl2an KBaseZBaseYHBaseYBaseXKH:BaseXBaseZ
36 fvex BaseZV
37 fvex BaseXV
38 36 37 elmap KHBaseZBaseXKH:BaseXBaseZ
39 35 38 sylibr KBaseZBaseYHBaseYBaseXKHBaseZBaseX
40 39 ancoms HBaseYBaseXKBaseZBaseYKHBaseZBaseX
41 40 adantl φXBYBZBHBaseYBaseXKBaseZBaseYKHBaseZBaseX
42 fvresi KHBaseZBaseXIBaseZBaseXKH=KH
43 41 42 syl φXBYBZBHBaseYBaseXKBaseZBaseYIBaseZBaseXKH=KH
44 1 2 3 4 5 6 7 20 28 funcestrcsetclem5 φXBZBXGZ=IBaseZBaseX
45 44 3adantr2 φXBYBZBXGZ=IBaseZBaseX
46 45 adantr φXBYBZBHBaseYBaseXKBaseZBaseYXGZ=IBaseZBaseX
47 8 adantr φXBYBZBHBaseYBaseXKBaseZBaseYUWUni
48 eqid compE=compE
49 15 adantr φXBYBZBHBaseYBaseXKBaseZBaseYXU
50 19 adantr φXBYBZBHBaseYBaseXKBaseZBaseYYU
51 27 adantr φXBYBZBHBaseYBaseXKBaseZBaseYZU
52 33 ad2antrl φXBYBZBHBaseYBaseXKBaseZBaseYH:BaseXBaseY
53 32 ad2antll φXBYBZBHBaseYBaseXKBaseZBaseYK:BaseYBaseZ
54 1 47 48 49 50 51 20 21 28 52 53 estrcco φXBYBZBHBaseYBaseXKBaseZBaseYKXYcompEZH=KH
55 46 54 fveq12d φXBYBZBHBaseYBaseXKBaseZBaseYXGZKXYcompEZH=IBaseZBaseXKH
56 eqid compS=compS
57 1 2 3 4 5 6 funcestrcsetclem2 φXBFXU
58 57 3ad2antr1 φXBYBZBFXU
59 58 adantr φXBYBZBHBaseYBaseXKBaseZBaseYFXU
60 1 2 3 4 5 6 funcestrcsetclem2 φYBFYU
61 60 3ad2antr2 φXBYBZBFYU
62 61 adantr φXBYBZBHBaseYBaseXKBaseZBaseYFYU
63 1 2 3 4 5 6 funcestrcsetclem2 φZBFZU
64 63 3ad2antr3 φXBYBZBFZU
65 64 adantr φXBYBZBHBaseYBaseXKBaseZBaseYFZU
66 1 2 3 4 5 6 funcestrcsetclem1 φXBFX=BaseX
67 66 3ad2antr1 φXBYBZBFX=BaseX
68 1 2 3 4 5 6 funcestrcsetclem1 φYBFY=BaseY
69 68 3ad2antr2 φXBYBZBFY=BaseY
70 67 69 feq23d φXBYBZBH:FXFYH:BaseXBaseY
71 70 adantr φXBYBZBHBaseYBaseXKBaseZBaseYH:FXFYH:BaseXBaseY
72 52 71 mpbird φXBYBZBHBaseYBaseXKBaseZBaseYH:FXFY
73 simpll φXBYBZBHBaseYBaseXKBaseZBaseYφ
74 3simpa XBYBZBXBYB
75 74 ad2antlr φXBYBZBHBaseYBaseXKBaseZBaseYXBYB
76 simprl φXBYBZBHBaseYBaseXKBaseZBaseYHBaseYBaseX
77 1 2 3 4 5 6 7 20 21 funcestrcsetclem6 φXBYBHBaseYBaseXXGYH=H
78 73 75 76 77 syl3anc φXBYBZBHBaseYBaseXKBaseZBaseYXGYH=H
79 78 feq1d φXBYBZBHBaseYBaseXKBaseZBaseYXGYH:FXFYH:FXFY
80 72 79 mpbird φXBYBZBHBaseYBaseXKBaseZBaseYXGYH:FXFY
81 1 2 3 4 5 6 funcestrcsetclem1 φZBFZ=BaseZ
82 81 3ad2antr3 φXBYBZBFZ=BaseZ
83 69 82 feq23d φXBYBZBK:FYFZK:BaseYBaseZ
84 83 adantr φXBYBZBHBaseYBaseXKBaseZBaseYK:FYFZK:BaseYBaseZ
85 53 84 mpbird φXBYBZBHBaseYBaseXKBaseZBaseYK:FYFZ
86 3simpc XBYBZBYBZB
87 86 ad2antlr φXBYBZBHBaseYBaseXKBaseZBaseYYBZB
88 simprr φXBYBZBHBaseYBaseXKBaseZBaseYKBaseZBaseY
89 1 2 3 4 5 6 7 21 28 funcestrcsetclem6 φYBZBKBaseZBaseYYGZK=K
90 73 87 88 89 syl3anc φXBYBZBHBaseYBaseXKBaseZBaseYYGZK=K
91 90 feq1d φXBYBZBHBaseYBaseXKBaseZBaseYYGZK:FYFZK:FYFZ
92 85 91 mpbird φXBYBZBHBaseYBaseXKBaseZBaseYYGZK:FYFZ
93 2 47 56 59 62 65 80 92 setcco φXBYBZBHBaseYBaseXKBaseZBaseYYGZKFXFYcompSFZXGYH=YGZKXGYH
94 90 78 coeq12d φXBYBZBHBaseYBaseXKBaseZBaseYYGZKXGYH=KH
95 93 94 eqtrd φXBYBZBHBaseYBaseXKBaseZBaseYYGZKFXFYcompSFZXGYH=KH
96 43 55 95 3eqtr4d φXBYBZBHBaseYBaseXKBaseZBaseYXGZKXYcompEZH=YGZKFXFYcompSFZXGYH
97 96 ex φXBYBZBHBaseYBaseXKBaseZBaseYXGZKXYcompEZH=YGZKFXFYcompSFZXGYH
98 31 97 sylbid φXBYBZBHXHomEYKYHomEZXGZKXYcompEZH=YGZKFXFYcompSFZXGYH
99 98 3impia φXBYBZBHXHomEYKYHomEZXGZKXYcompEZH=YGZKFXFYcompSFZXGYH