Metamath Proof Explorer


Theorem fvmptnn04if

Description: The function values of a mapping from the nonnegative integers with four distinct cases. (Contributed by AV, 10-Nov-2019)

Ref Expression
Hypotheses fvmptnn04if.g G=n0ifn=0Aifn=SCifS<nDB
fvmptnn04if.s φS
fvmptnn04if.n φN0
fvmptnn04if.y φYV
fvmptnn04if.a φN=0Y=N/nA
fvmptnn04if.b φ0<NN<SY=N/nB
fvmptnn04if.c φN=SY=N/nC
fvmptnn04if.d φS<NY=N/nD
Assertion fvmptnn04if φGN=Y

Proof

Step Hyp Ref Expression
1 fvmptnn04if.g G=n0ifn=0Aifn=SCifS<nDB
2 fvmptnn04if.s φS
3 fvmptnn04if.n φN0
4 fvmptnn04if.y φYV
5 fvmptnn04if.a φN=0Y=N/nA
6 fvmptnn04if.b φ0<NN<SY=N/nB
7 fvmptnn04if.c φN=SY=N/nC
8 fvmptnn04if.d φS<NY=N/nD
9 csbif N/nifn=0Aifn=SCifS<nDB=if[˙N/n]˙n=0N/nAN/nifn=SCifS<nDB
10 eqsbc1 N0[˙N/n]˙n=0N=0
11 3 10 syl φ[˙N/n]˙n=0N=0
12 csbif N/nifn=SCifS<nDB=if[˙N/n]˙n=SN/nCN/nifS<nDB
13 eqsbc1 N0[˙N/n]˙n=SN=S
14 3 13 syl φ[˙N/n]˙n=SN=S
15 csbif N/nifS<nDB=if[˙N/n]˙S<nN/nDN/nB
16 sbcbr2g N0[˙N/n]˙S<nS<N/nn
17 3 16 syl φ[˙N/n]˙S<nS<N/nn
18 csbvarg N0N/nn=N
19 3 18 syl φN/nn=N
20 19 breq2d φS<N/nnS<N
21 17 20 bitrd φ[˙N/n]˙S<nS<N
22 21 ifbid φif[˙N/n]˙S<nN/nDN/nB=ifS<NN/nDN/nB
23 15 22 eqtrid φN/nifS<nDB=ifS<NN/nDN/nB
24 14 23 ifbieq2d φif[˙N/n]˙n=SN/nCN/nifS<nDB=ifN=SN/nCifS<NN/nDN/nB
25 12 24 eqtrid φN/nifn=SCifS<nDB=ifN=SN/nCifS<NN/nDN/nB
26 11 25 ifbieq2d φif[˙N/n]˙n=0N/nAN/nifn=SCifS<nDB=ifN=0N/nAifN=SN/nCifS<NN/nDN/nB
27 9 26 eqtrid φN/nifn=0Aifn=SCifS<nDB=ifN=0N/nAifN=SN/nCifS<NN/nDN/nB
28 4 adantr φN=0YV
29 5 28 eqeltrrd φN=0N/nAV
30 7 eqcomd φN=SN/nC=Y
31 30 adantlr φ¬N=0N=SN/nC=Y
32 4 ad2antrr φ¬N=0N=SYV
33 31 32 eqeltrd φ¬N=0N=SN/nCV
34 8 eqcomd φS<NN/nD=Y
35 34 ad4ant14 φ¬N=0¬N=SS<NN/nD=Y
36 4 ad3antrrr φ¬N=0¬N=SS<NYV
37 35 36 eqeltrd φ¬N=0¬N=SS<NN/nDV
38 simplll φ¬N=0¬N=S¬S<Nφ
39 anass ¬N=0¬N=S¬S<N¬N=0¬N=S¬S<N
40 39 bicomi ¬N=0¬N=S¬S<N¬N=0¬N=S¬S<N
41 40 bianassc φ¬N=0¬N=S¬S<N¬N=0¬N=Sφ¬S<N
42 an32 ¬N=0¬N=Sφ¬N=0φ¬N=S
43 ancom ¬N=0φφ¬N=0
44 43 anbi1i ¬N=0φ¬N=Sφ¬N=0¬N=S
45 42 44 bitri ¬N=0¬N=Sφφ¬N=0¬N=S
46 45 anbi1i ¬N=0¬N=Sφ¬S<Nφ¬N=0¬N=S¬S<N
47 41 46 bitri φ¬N=0¬N=S¬S<Nφ¬N=0¬N=S¬S<N
48 df-ne N0¬N=0
49 elnnne0 NN0N0
50 nngt0 N0<N
51 49 50 sylbir N0N00<N
52 51 expcom N0N00<N
53 48 52 sylbir ¬N=0N00<N
54 53 adantr ¬N=0¬N=S¬S<NN00<N
55 3 54 mpan9 φ¬N=0¬N=S¬S<N0<N
56 47 55 sylbir φ¬N=0¬N=S¬S<N0<N
57 3 nn0red φN
58 57 adantr φ¬N=0¬N=S¬S<NN
59 2 nnred φS
60 59 adantr φ¬N=0¬N=S¬S<NS
61 57 59 lenltd φNS¬S<N
62 61 biimprd φ¬S<NNS
63 62 adantld φ¬N=S¬S<NNS
64 63 adantld φ¬N=0¬N=S¬S<NNS
65 64 imp φ¬N=0¬N=S¬S<NNS
66 nesym SN¬N=S
67 66 biimpri ¬N=SSN
68 67 adantr ¬N=S¬S<NSN
69 68 ad2antll φ¬N=0¬N=S¬S<NSN
70 58 60 65 69 leneltd φ¬N=0¬N=S¬S<NN<S
71 47 70 sylbir φ¬N=0¬N=S¬S<NN<S
72 6 eqcomd φ0<NN<SN/nB=Y
73 38 56 71 72 syl3anc φ¬N=0¬N=S¬S<NN/nB=Y
74 4 ad3antrrr φ¬N=0¬N=S¬S<NYV
75 73 74 eqeltrd φ¬N=0¬N=S¬S<NN/nBV
76 37 75 ifclda φ¬N=0¬N=SifS<NN/nDN/nBV
77 33 76 ifclda φ¬N=0ifN=SN/nCifS<NN/nDN/nBV
78 29 77 ifclda φifN=0N/nAifN=SN/nCifS<NN/nDN/nBV
79 27 78 eqeltrd φN/nifn=0Aifn=SCifS<nDBV
80 1 fvmpts N0N/nifn=0Aifn=SCifS<nDBVGN=N/nifn=0Aifn=SCifS<nDB
81 3 79 80 syl2anc φGN=N/nifn=0Aifn=SCifS<nDB
82 5 eqcomd φN=0N/nA=Y
83 35 73 ifeqda φ¬N=0¬N=SifS<NN/nDN/nB=Y
84 31 83 ifeqda φ¬N=0ifN=SN/nCifS<NN/nDN/nB=Y
85 82 84 ifeqda φifN=0N/nAifN=SN/nCifS<NN/nDN/nB=Y
86 81 27 85 3eqtrd φGN=Y