Step |
Hyp |
Ref |
Expression |
1 |
|
fvmptnn04if.g |
|
2 |
|
fvmptnn04if.s |
|
3 |
|
fvmptnn04if.n |
|
4 |
|
fvmptnn04if.y |
|
5 |
|
fvmptnn04if.a |
|
6 |
|
fvmptnn04if.b |
|
7 |
|
fvmptnn04if.c |
|
8 |
|
fvmptnn04if.d |
|
9 |
|
csbif |
|
10 |
|
eqsbc1 |
|
11 |
3 10
|
syl |
|
12 |
|
csbif |
|
13 |
|
eqsbc1 |
|
14 |
3 13
|
syl |
|
15 |
|
csbif |
|
16 |
|
sbcbr2g |
|
17 |
3 16
|
syl |
|
18 |
|
csbvarg |
|
19 |
3 18
|
syl |
|
20 |
19
|
breq2d |
|
21 |
17 20
|
bitrd |
|
22 |
21
|
ifbid |
|
23 |
15 22
|
eqtrid |
|
24 |
14 23
|
ifbieq2d |
|
25 |
12 24
|
eqtrid |
|
26 |
11 25
|
ifbieq2d |
|
27 |
9 26
|
eqtrid |
|
28 |
4
|
adantr |
|
29 |
5 28
|
eqeltrrd |
|
30 |
7
|
eqcomd |
|
31 |
30
|
adantlr |
|
32 |
4
|
ad2antrr |
|
33 |
31 32
|
eqeltrd |
|
34 |
8
|
eqcomd |
|
35 |
34
|
ad4ant14 |
|
36 |
4
|
ad3antrrr |
|
37 |
35 36
|
eqeltrd |
|
38 |
|
simplll |
|
39 |
|
anass |
|
40 |
39
|
bicomi |
|
41 |
40
|
bianassc |
|
42 |
|
an32 |
|
43 |
|
ancom |
|
44 |
43
|
anbi1i |
|
45 |
42 44
|
bitri |
|
46 |
45
|
anbi1i |
|
47 |
41 46
|
bitri |
|
48 |
|
df-ne |
|
49 |
|
elnnne0 |
|
50 |
|
nngt0 |
|
51 |
49 50
|
sylbir |
|
52 |
51
|
expcom |
|
53 |
48 52
|
sylbir |
|
54 |
53
|
adantr |
|
55 |
3 54
|
mpan9 |
|
56 |
47 55
|
sylbir |
|
57 |
3
|
nn0red |
|
58 |
57
|
adantr |
|
59 |
2
|
nnred |
|
60 |
59
|
adantr |
|
61 |
57 59
|
lenltd |
|
62 |
61
|
biimprd |
|
63 |
62
|
adantld |
|
64 |
63
|
adantld |
|
65 |
64
|
imp |
|
66 |
|
nesym |
|
67 |
66
|
biimpri |
|
68 |
67
|
adantr |
|
69 |
68
|
ad2antll |
|
70 |
58 60 65 69
|
leneltd |
|
71 |
47 70
|
sylbir |
|
72 |
6
|
eqcomd |
|
73 |
38 56 71 72
|
syl3anc |
|
74 |
4
|
ad3antrrr |
|
75 |
73 74
|
eqeltrd |
|
76 |
37 75
|
ifclda |
|
77 |
33 76
|
ifclda |
|
78 |
29 77
|
ifclda |
|
79 |
27 78
|
eqeltrd |
|
80 |
1
|
fvmpts |
|
81 |
3 79 80
|
syl2anc |
|
82 |
5
|
eqcomd |
|
83 |
35 73
|
ifeqda |
|
84 |
31 83
|
ifeqda |
|
85 |
82 84
|
ifeqda |
|
86 |
81 27 85
|
3eqtrd |
|