Metamath Proof Explorer


Theorem gasubg

Description: The restriction of a group action to a subgroup is a group action. (Contributed by Mario Carneiro, 17-Jan-2015)

Ref Expression
Hypothesis gasubg.1 H=G𝑠S
Assertion gasubg ˙GGrpActYSSubGrpG˙S×YHGrpActY

Proof

Step Hyp Ref Expression
1 gasubg.1 H=G𝑠S
2 gaset ˙GGrpActYYV
3 1 subggrp SSubGrpGHGrp
4 2 3 anim12ci ˙GGrpActYSSubGrpGHGrpYV
5 eqid BaseG=BaseG
6 5 gaf ˙GGrpActY˙:BaseG×YY
7 6 adantr ˙GGrpActYSSubGrpG˙:BaseG×YY
8 simpr ˙GGrpActYSSubGrpGSSubGrpG
9 5 subgss SSubGrpGSBaseG
10 8 9 syl ˙GGrpActYSSubGrpGSBaseG
11 xpss1 SBaseGS×YBaseG×Y
12 10 11 syl ˙GGrpActYSSubGrpGS×YBaseG×Y
13 7 12 fssresd ˙GGrpActYSSubGrpG˙S×Y:S×YY
14 1 subgbas SSubGrpGS=BaseH
15 8 14 syl ˙GGrpActYSSubGrpGS=BaseH
16 15 xpeq1d ˙GGrpActYSSubGrpGS×Y=BaseH×Y
17 16 feq2d ˙GGrpActYSSubGrpG˙S×Y:S×YY˙S×Y:BaseH×YY
18 13 17 mpbid ˙GGrpActYSSubGrpG˙S×Y:BaseH×YY
19 8 adantr ˙GGrpActYSSubGrpGxYSSubGrpG
20 eqid 0G=0G
21 20 subg0cl SSubGrpG0GS
22 19 21 syl ˙GGrpActYSSubGrpGxY0GS
23 simpr ˙GGrpActYSSubGrpGxYxY
24 ovres 0GSxY0G˙S×Yx=0G˙x
25 22 23 24 syl2anc ˙GGrpActYSSubGrpGxY0G˙S×Yx=0G˙x
26 1 20 subg0 SSubGrpG0G=0H
27 19 26 syl ˙GGrpActYSSubGrpGxY0G=0H
28 27 oveq1d ˙GGrpActYSSubGrpGxY0G˙S×Yx=0H˙S×Yx
29 20 gagrpid ˙GGrpActYxY0G˙x=x
30 29 adantlr ˙GGrpActYSSubGrpGxY0G˙x=x
31 25 28 30 3eqtr3d ˙GGrpActYSSubGrpGxY0H˙S×Yx=x
32 eqimss2 S=BaseHBaseHS
33 15 32 syl ˙GGrpActYSSubGrpGBaseHS
34 33 adantr ˙GGrpActYSSubGrpGxYBaseHS
35 34 sselda ˙GGrpActYSSubGrpGxYyBaseHyS
36 34 sselda ˙GGrpActYSSubGrpGxYzBaseHzS
37 35 36 anim12dan ˙GGrpActYSSubGrpGxYyBaseHzBaseHySzS
38 simprl ˙GGrpActYSSubGrpGxYySzSyS
39 7 ad2antrr ˙GGrpActYSSubGrpGxYySzS˙:BaseG×YY
40 9 ad3antlr ˙GGrpActYSSubGrpGxYySzSSBaseG
41 simprr ˙GGrpActYSSubGrpGxYySzSzS
42 40 41 sseldd ˙GGrpActYSSubGrpGxYySzSzBaseG
43 23 adantr ˙GGrpActYSSubGrpGxYySzSxY
44 39 42 43 fovcdmd ˙GGrpActYSSubGrpGxYySzSz˙xY
45 ovres ySz˙xYy˙S×Yz˙x=y˙z˙x
46 38 44 45 syl2anc ˙GGrpActYSSubGrpGxYySzSy˙S×Yz˙x=y˙z˙x
47 ovres zSxYz˙S×Yx=z˙x
48 41 43 47 syl2anc ˙GGrpActYSSubGrpGxYySzSz˙S×Yx=z˙x
49 48 oveq2d ˙GGrpActYSSubGrpGxYySzSy˙S×Yz˙S×Yx=y˙S×Yz˙x
50 simplll ˙GGrpActYSSubGrpGxYySzS˙GGrpActY
51 40 38 sseldd ˙GGrpActYSSubGrpGxYySzSyBaseG
52 eqid +G=+G
53 5 52 gaass ˙GGrpActYyBaseGzBaseGxYy+Gz˙x=y˙z˙x
54 50 51 42 43 53 syl13anc ˙GGrpActYSSubGrpGxYySzSy+Gz˙x=y˙z˙x
55 46 49 54 3eqtr4d ˙GGrpActYSSubGrpGxYySzSy˙S×Yz˙S×Yx=y+Gz˙x
56 52 subgcl SSubGrpGySzSy+GzS
57 56 3expb SSubGrpGySzSy+GzS
58 19 57 sylan ˙GGrpActYSSubGrpGxYySzSy+GzS
59 ovres y+GzSxYy+Gz˙S×Yx=y+Gz˙x
60 58 43 59 syl2anc ˙GGrpActYSSubGrpGxYySzSy+Gz˙S×Yx=y+Gz˙x
61 1 52 ressplusg SSubGrpG+G=+H
62 61 ad3antlr ˙GGrpActYSSubGrpGxYySzS+G=+H
63 62 oveqd ˙GGrpActYSSubGrpGxYySzSy+Gz=y+Hz
64 63 oveq1d ˙GGrpActYSSubGrpGxYySzSy+Gz˙S×Yx=y+Hz˙S×Yx
65 55 60 64 3eqtr2rd ˙GGrpActYSSubGrpGxYySzSy+Hz˙S×Yx=y˙S×Yz˙S×Yx
66 37 65 syldan ˙GGrpActYSSubGrpGxYyBaseHzBaseHy+Hz˙S×Yx=y˙S×Yz˙S×Yx
67 66 ralrimivva ˙GGrpActYSSubGrpGxYyBaseHzBaseHy+Hz˙S×Yx=y˙S×Yz˙S×Yx
68 31 67 jca ˙GGrpActYSSubGrpGxY0H˙S×Yx=xyBaseHzBaseHy+Hz˙S×Yx=y˙S×Yz˙S×Yx
69 68 ralrimiva ˙GGrpActYSSubGrpGxY0H˙S×Yx=xyBaseHzBaseHy+Hz˙S×Yx=y˙S×Yz˙S×Yx
70 18 69 jca ˙GGrpActYSSubGrpG˙S×Y:BaseH×YYxY0H˙S×Yx=xyBaseHzBaseHy+Hz˙S×Yx=y˙S×Yz˙S×Yx
71 eqid BaseH=BaseH
72 eqid +H=+H
73 eqid 0H=0H
74 71 72 73 isga ˙S×YHGrpActYHGrpYV˙S×Y:BaseH×YYxY0H˙S×Yx=xyBaseHzBaseHy+Hz˙S×Yx=y˙S×Yz˙S×Yx
75 4 70 74 sylanbrc ˙GGrpActYSSubGrpG˙S×YHGrpActY