Metamath Proof Explorer


Theorem geolim3

Description: Geometric series convergence with arbitrary shift, radix, and multiplicative constant. (Contributed by Stefan O'Rear, 16-Nov-2014)

Ref Expression
Hypotheses geolim3.a φA
geolim3.b1 φB
geolim3.b2 φB<1
geolim3.c φC
geolim3.f F=kACBkA
Assertion geolim3 φseqA+FC1B

Proof

Step Hyp Ref Expression
1 geolim3.a φA
2 geolim3.b1 φB
3 geolim3.b2 φB<1
4 geolim3.c φC
5 geolim3.f F=kACBkA
6 seqeq3 F=kACBkAseqA+F=seqA+kACBkA
7 5 6 ax-mp seqA+F=seqA+kACBkA
8 nn0uz 0=0
9 0zd φ0
10 oveq2 k=aBk=Ba
11 eqid k0Bk=k0Bk
12 ovex BaV
13 10 11 12 fvmpt a0k0Bka=Ba
14 13 adantl φa0k0Bka=Ba
15 2 3 14 geolim φseq0+k0Bk11B
16 expcl Ba0Ba
17 2 16 sylan φa0Ba
18 14 17 eqeltrd φa0k0Bka
19 1 zcnd φA
20 nn0cn a0a
21 fvex AV
22 21 mptex kACBkAV
23 22 shftval4 AakACBkAshiftAa=kACBkAA+a
24 19 20 23 syl2an φa0kACBkAshiftAa=kACBkAA+a
25 uzid AAA
26 1 25 syl φAA
27 uzaddcl AAa0A+aA
28 26 27 sylan φa0A+aA
29 oveq1 k=A+akA=A+a-A
30 29 oveq2d k=A+aBkA=BA+a-A
31 30 oveq2d k=A+aCBkA=CBA+a-A
32 eqid kACBkA=kACBkA
33 ovex CBA+a-AV
34 31 32 33 fvmpt A+aAkACBkAA+a=CBA+a-A
35 28 34 syl φa0kACBkAA+a=CBA+a-A
36 pncan2 AaA+a-A=a
37 19 20 36 syl2an φa0A+a-A=a
38 37 oveq2d φa0BA+a-A=Ba
39 38 14 eqtr4d φa0BA+a-A=k0Bka
40 39 oveq2d φa0CBA+a-A=Ck0Bka
41 24 35 40 3eqtrd φa0kACBkAshiftAa=Ck0Bka
42 8 9 4 15 18 41 isermulc2 φseq0+kACBkAshiftAC11B
43 19 negidd φA+A=0
44 43 seqeq1d φseqA+A+kACBkAshiftA=seq0+kACBkAshiftA
45 ax-1cn 1
46 subcl 1B1B
47 45 2 46 sylancr φ1B
48 abs1 1=1
49 48 a1i φ1=1
50 2 abscld φB
51 50 3 gtned φ1B
52 49 51 eqnetrd φ1B
53 fveq2 1=B1=B
54 53 necon3i 1B1B
55 52 54 syl φ1B
56 subeq0 1B1B=01=B
57 45 2 56 sylancr φ1B=01=B
58 57 necon3bid φ1B01B
59 55 58 mpbird φ1B0
60 4 47 59 divrecd φC1B=C11B
61 42 44 60 3brtr4d φseqA+A+kACBkAshiftAC1B
62 1 znegcld φA
63 22 isershft AAseqA+kACBkAC1BseqA+A+kACBkAshiftAC1B
64 1 62 63 syl2anc φseqA+kACBkAC1BseqA+A+kACBkAshiftAC1B
65 61 64 mpbird φseqA+kACBkAC1B
66 7 65 eqbrtrid φseqA+FC1B