Description: Geometric series convergence with arbitrary shift, radix, and multiplicative constant. (Contributed by Stefan O'Rear, 16-Nov-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | geolim3.a | |
|
geolim3.b1 | |
||
geolim3.b2 | |
||
geolim3.c | |
||
geolim3.f | |
||
Assertion | geolim3 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | geolim3.a | |
|
2 | geolim3.b1 | |
|
3 | geolim3.b2 | |
|
4 | geolim3.c | |
|
5 | geolim3.f | |
|
6 | seqeq3 | |
|
7 | 5 6 | ax-mp | |
8 | nn0uz | |
|
9 | 0zd | |
|
10 | oveq2 | |
|
11 | eqid | |
|
12 | ovex | |
|
13 | 10 11 12 | fvmpt | |
14 | 13 | adantl | |
15 | 2 3 14 | geolim | |
16 | expcl | |
|
17 | 2 16 | sylan | |
18 | 14 17 | eqeltrd | |
19 | 1 | zcnd | |
20 | nn0cn | |
|
21 | fvex | |
|
22 | 21 | mptex | |
23 | 22 | shftval4 | |
24 | 19 20 23 | syl2an | |
25 | uzid | |
|
26 | 1 25 | syl | |
27 | uzaddcl | |
|
28 | 26 27 | sylan | |
29 | oveq1 | |
|
30 | 29 | oveq2d | |
31 | 30 | oveq2d | |
32 | eqid | |
|
33 | ovex | |
|
34 | 31 32 33 | fvmpt | |
35 | 28 34 | syl | |
36 | pncan2 | |
|
37 | 19 20 36 | syl2an | |
38 | 37 | oveq2d | |
39 | 38 14 | eqtr4d | |
40 | 39 | oveq2d | |
41 | 24 35 40 | 3eqtrd | |
42 | 8 9 4 15 18 41 | isermulc2 | |
43 | 19 | negidd | |
44 | 43 | seqeq1d | |
45 | ax-1cn | |
|
46 | subcl | |
|
47 | 45 2 46 | sylancr | |
48 | abs1 | |
|
49 | 48 | a1i | |
50 | 2 | abscld | |
51 | 50 3 | gtned | |
52 | 49 51 | eqnetrd | |
53 | fveq2 | |
|
54 | 53 | necon3i | |
55 | 52 54 | syl | |
56 | subeq0 | |
|
57 | 45 2 56 | sylancr | |
58 | 57 | necon3bid | |
59 | 55 58 | mpbird | |
60 | 4 47 59 | divrecd | |
61 | 42 44 60 | 3brtr4d | |
62 | 1 | znegcld | |
63 | 22 | isershft | |
64 | 1 62 63 | syl2anc | |
65 | 61 64 | mpbird | |
66 | 7 65 | eqbrtrid | |