Metamath Proof Explorer


Theorem glbconN

Description: De Morgan's law for GLB and LUB. This holds in any complete ortholattice, although we assume HL for convenience. (Contributed by NM, 17-Jan-2012) New df-riota . (Revised by SN, 3-Jan-2025) (New usage is discouraged.)

Ref Expression
Hypotheses glbcon.b B=BaseK
glbcon.u U=lubK
glbcon.g G=glbK
glbcon.o ˙=ocK
Assertion glbconN KHLSBGS=˙UxB|˙xS

Proof

Step Hyp Ref Expression
1 glbcon.b B=BaseK
2 glbcon.u U=lubK
3 glbcon.g G=glbK
4 glbcon.o ˙=ocK
5 sseqin2 SBBS=S
6 5 biimpi SBBS=S
7 dfin5 BS=xB|xS
8 6 7 eqtr3di SBS=xB|xS
9 8 fveq2d SBGS=GxB|xS
10 eqid K=K
11 biid zxB|xSyKzwBzxB|xSwKzwKyzxB|xSyKzwBzxB|xSwKzwKy
12 id KHLKHL
13 ssrab2 xB|xSB
14 13 a1i KHLxB|xSB
15 1 10 3 11 12 14 glbval KHLGxB|xS=ιyB|zxB|xSyKzwBzxB|xSwKzwKy
16 hlop KHLKOP
17 hlclat KHLKCLat
18 1 3 clatglbcl2 KCLatxB|xSBxB|xSdomG
19 17 14 18 syl2anc KHLxB|xSdomG
20 1 10 3 11 12 19 glbeu KHL∃!yBzxB|xSyKzwBzxB|xSwKzwKy
21 breq1 y=˙vyKz˙vKz
22 21 ralbidv y=˙vzxB|xSyKzzxB|xS˙vKz
23 breq2 y=˙vwKywK˙v
24 23 imbi2d y=˙vzxB|xSwKzwKyzxB|xSwKzwK˙v
25 24 ralbidv y=˙vwBzxB|xSwKzwKywBzxB|xSwKzwK˙v
26 22 25 anbi12d y=˙vzxB|xSyKzwBzxB|xSwKzwKyzxB|xS˙vKzwBzxB|xSwKzwK˙v
27 1 4 26 riotaocN KOP∃!yBzxB|xSyKzwBzxB|xSwKzwKyιyB|zxB|xSyKzwBzxB|xSwKzwKy=˙ιvB|zxB|xS˙vKzwBzxB|xSwKzwK˙v
28 16 20 27 syl2anc KHLιyB|zxB|xSyKzwBzxB|xSwKzwKy=˙ιvB|zxB|xS˙vKzwBzxB|xSwKzwK˙v
29 16 ad2antrr KHLvBuBKOP
30 1 4 opoccl KOPuB˙uB
31 29 30 sylancom KHLvBuB˙uB
32 16 ad2antrr KHLvBzBKOP
33 1 4 opoccl KOPzB˙zB
34 32 33 sylancom KHLvBzB˙zB
35 1 4 opococ KOPzB˙˙z=z
36 32 35 sylancom KHLvBzB˙˙z=z
37 36 eqcomd KHLvBzBz=˙˙z
38 fveq2 u=˙z˙u=˙˙z
39 38 rspceeqv ˙zBz=˙˙zuBz=˙u
40 34 37 39 syl2anc KHLvBzBuBz=˙u
41 eleq1 z=˙uzS˙uS
42 breq2 z=˙u˙vKz˙vK˙u
43 41 42 imbi12d z=˙uzS˙vKz˙uS˙vK˙u
44 43 adantl KHLvBz=˙uzS˙vKz˙uS˙vK˙u
45 31 40 44 ralxfrd KHLvBzBzS˙vKzuB˙uS˙vK˙u
46 simpr KHLvBuBuB
47 simplr KHLvBuBvB
48 1 10 4 oplecon3b KOPuBvBuKv˙vK˙u
49 29 46 47 48 syl3anc KHLvBuBuKv˙vK˙u
50 49 imbi2d KHLvBuB˙uSuKv˙uS˙vK˙u
51 50 ralbidva KHLvBuB˙uSuKvuB˙uS˙vK˙u
52 45 51 bitr4d KHLvBzBzS˙vKzuB˙uSuKv
53 eleq1 x=zxSzS
54 53 ralrab zxB|xS˙vKzzBzS˙vKz
55 fveq2 x=u˙x=˙u
56 55 eleq1d x=u˙xS˙uS
57 56 ralrab uxB|˙xSuKvuB˙uSuKv
58 52 54 57 3bitr4g KHLvBzxB|xS˙vKzuxB|˙xSuKv
59 16 ad2antrr KHLvBtBKOP
60 1 4 opoccl KOPtB˙tB
61 59 60 sylancom KHLvBtB˙tB
62 16 ad2antrr KHLvBwBKOP
63 1 4 opoccl KOPwB˙wB
64 62 63 sylancom KHLvBwB˙wB
65 1 4 opococ KOPwB˙˙w=w
66 62 65 sylancom KHLvBwB˙˙w=w
67 66 eqcomd KHLvBwBw=˙˙w
68 fveq2 t=˙w˙t=˙˙w
69 68 rspceeqv ˙wBw=˙˙wtBw=˙t
70 64 67 69 syl2anc KHLvBwBtBw=˙t
71 breq1 w=˙twKz˙tKz
72 71 ralbidv w=˙tzxB|xSwKzzxB|xS˙tKz
73 breq1 w=˙twK˙v˙tK˙v
74 72 73 imbi12d w=˙tzxB|xSwKzwK˙vzxB|xS˙tKz˙tK˙v
75 74 adantl KHLvBw=˙tzxB|xSwKzwK˙vzxB|xS˙tKz˙tK˙v
76 61 70 75 ralxfrd KHLvBwBzxB|xSwKzwK˙vtBzxB|xS˙tKz˙tK˙v
77 16 ad3antrrr KHLvBtBuBKOP
78 simpr KHLvBtBuBuB
79 simplr KHLvBtBuBtB
80 1 10 4 oplecon3b KOPuBtBuKt˙tK˙u
81 77 78 79 80 syl3anc KHLvBtBuBuKt˙tK˙u
82 81 imbi2d KHLvBtBuB˙uSuKt˙uS˙tK˙u
83 82 ralbidva KHLvBtBuB˙uSuKtuB˙uS˙tK˙u
84 77 30 sylancom KHLvBtBuB˙uB
85 16 ad3antrrr KHLvBtBzBKOP
86 85 33 sylancom KHLvBtBzB˙zB
87 85 35 sylancom KHLvBtBzB˙˙z=z
88 87 eqcomd KHLvBtBzBz=˙˙z
89 86 88 39 syl2anc KHLvBtBzBuBz=˙u
90 breq2 z=˙u˙tKz˙tK˙u
91 41 90 imbi12d z=˙uzS˙tKz˙uS˙tK˙u
92 91 adantl KHLvBtBz=˙uzS˙tKz˙uS˙tK˙u
93 84 89 92 ralxfrd KHLvBtBzBzS˙tKzuB˙uS˙tK˙u
94 83 93 bitr4d KHLvBtBuB˙uSuKtzBzS˙tKz
95 56 ralrab uxB|˙xSuKtuB˙uSuKt
96 53 ralrab zxB|xS˙tKzzBzS˙tKz
97 94 95 96 3bitr4g KHLvBtBuxB|˙xSuKtzxB|xS˙tKz
98 simplr KHLvBtBvB
99 simpr KHLvBtBtB
100 1 10 4 oplecon3b KOPvBtBvKt˙tK˙v
101 59 98 99 100 syl3anc KHLvBtBvKt˙tK˙v
102 97 101 imbi12d KHLvBtBuxB|˙xSuKtvKtzxB|xS˙tKz˙tK˙v
103 102 ralbidva KHLvBtBuxB|˙xSuKtvKttBzxB|xS˙tKz˙tK˙v
104 76 103 bitr4d KHLvBwBzxB|xSwKzwK˙vtBuxB|˙xSuKtvKt
105 58 104 anbi12d KHLvBzxB|xS˙vKzwBzxB|xSwKzwK˙vuxB|˙xSuKvtBuxB|˙xSuKtvKt
106 105 riotabidva KHLιvB|zxB|xS˙vKzwBzxB|xSwKzwK˙v=ιvB|uxB|˙xSuKvtBuxB|˙xSuKtvKt
107 ssrab2 xB|˙xSB
108 biid uxB|˙xSuKvtBuxB|˙xSuKtvKtuxB|˙xSuKvtBuxB|˙xSuKtvKt
109 simpl KHLxB|˙xSBKHL
110 simpr KHLxB|˙xSBxB|˙xSB
111 1 10 2 108 109 110 lubval KHLxB|˙xSBUxB|˙xS=ιvB|uxB|˙xSuKvtBuxB|˙xSuKtvKt
112 107 111 mpan2 KHLUxB|˙xS=ιvB|uxB|˙xSuKvtBuxB|˙xSuKtvKt
113 106 112 eqtr4d KHLιvB|zxB|xS˙vKzwBzxB|xSwKzwK˙v=UxB|˙xS
114 113 fveq2d KHL˙ιvB|zxB|xS˙vKzwBzxB|xSwKzwK˙v=˙UxB|˙xS
115 15 28 114 3eqtrd KHLGxB|xS=˙UxB|˙xS
116 9 115 sylan9eqr KHLSBGS=˙UxB|˙xS