Database
BASIC LINEAR ALGEBRA
The determinant
Laplace expansion of determinants (special case)
gsummatr01lem3
Next ⟩
gsummatr01lem4
Metamath Proof Explorer
Ascii
Unicode
Theorem
gsummatr01lem3
Description:
Lemma 1 for
gsummatr01
.
(Contributed by
AV
, 8-Jan-2019)
Ref
Expression
Hypotheses
gsummatr01.p
⊢
P
=
Base
SymGrp
N
gsummatr01.r
⊢
R
=
r
∈
P
|
r
K
=
L
gsummatr01.0
⊢
0
˙
=
0
G
gsummatr01.s
⊢
S
=
Base
G
Assertion
gsummatr01lem3
⊢
G
∈
CMnd
∧
N
∈
Fin
∧
∀
i
∈
N
∀
j
∈
N
i
A
j
∈
S
∧
B
∈
S
∧
K
∈
N
∧
L
∈
N
∧
Q
∈
R
→
∑
G
n
∈
N
∖
K
∪
K
n
i
∈
N
,
j
∈
N
⟼
if
i
=
K
if
j
=
L
0
˙
B
i
A
j
Q
n
=
∑
G
n
∈
N
∖
K
n
i
∈
N
,
j
∈
N
⟼
if
i
=
K
if
j
=
L
0
˙
B
i
A
j
Q
n
+
G
K
i
∈
N
,
j
∈
N
⟼
if
i
=
K
if
j
=
L
0
˙
B
i
A
j
Q
K
Proof
Step
Hyp
Ref
Expression
1
gsummatr01.p
⊢
P
=
Base
SymGrp
N
2
gsummatr01.r
⊢
R
=
r
∈
P
|
r
K
=
L
3
gsummatr01.0
⊢
0
˙
=
0
G
4
gsummatr01.s
⊢
S
=
Base
G
5
eqid
⊢
Base
G
=
Base
G
6
eqid
⊢
+
G
=
+
G
7
simpl
⊢
G
∈
CMnd
∧
N
∈
Fin
→
G
∈
CMnd
8
7
3ad2ant1
⊢
G
∈
CMnd
∧
N
∈
Fin
∧
∀
i
∈
N
∀
j
∈
N
i
A
j
∈
S
∧
B
∈
S
∧
K
∈
N
∧
L
∈
N
∧
Q
∈
R
→
G
∈
CMnd
9
diffi
⊢
N
∈
Fin
→
N
∖
K
∈
Fin
10
9
adantl
⊢
G
∈
CMnd
∧
N
∈
Fin
→
N
∖
K
∈
Fin
11
10
3ad2ant1
⊢
G
∈
CMnd
∧
N
∈
Fin
∧
∀
i
∈
N
∀
j
∈
N
i
A
j
∈
S
∧
B
∈
S
∧
K
∈
N
∧
L
∈
N
∧
Q
∈
R
→
N
∖
K
∈
Fin
12
eqidd
⊢
K
∈
N
∧
L
∈
N
∧
Q
∈
R
∧
n
∈
N
∖
K
→
i
∈
N
,
j
∈
N
⟼
if
i
=
K
if
j
=
L
0
˙
B
i
A
j
=
i
∈
N
,
j
∈
N
⟼
if
i
=
K
if
j
=
L
0
˙
B
i
A
j
13
eqeq1
⊢
i
=
n
→
i
=
K
↔
n
=
K
14
13
adantr
⊢
i
=
n
∧
j
=
Q
n
→
i
=
K
↔
n
=
K
15
eqeq1
⊢
j
=
Q
n
→
j
=
L
↔
Q
n
=
L
16
15
ifbid
⊢
j
=
Q
n
→
if
j
=
L
0
˙
B
=
if
Q
n
=
L
0
˙
B
17
16
adantl
⊢
i
=
n
∧
j
=
Q
n
→
if
j
=
L
0
˙
B
=
if
Q
n
=
L
0
˙
B
18
oveq12
⊢
i
=
n
∧
j
=
Q
n
→
i
A
j
=
n
A
Q
n
19
14
17
18
ifbieq12d
⊢
i
=
n
∧
j
=
Q
n
→
if
i
=
K
if
j
=
L
0
˙
B
i
A
j
=
if
n
=
K
if
Q
n
=
L
0
˙
B
n
A
Q
n
20
eldifsni
⊢
n
∈
N
∖
K
→
n
≠
K
21
20
neneqd
⊢
n
∈
N
∖
K
→
¬
n
=
K
22
21
iffalsed
⊢
n
∈
N
∖
K
→
if
n
=
K
if
Q
n
=
L
0
˙
B
n
A
Q
n
=
n
A
Q
n
23
22
adantl
⊢
K
∈
N
∧
L
∈
N
∧
Q
∈
R
∧
n
∈
N
∖
K
→
if
n
=
K
if
Q
n
=
L
0
˙
B
n
A
Q
n
=
n
A
Q
n
24
19
23
sylan9eqr
⊢
K
∈
N
∧
L
∈
N
∧
Q
∈
R
∧
n
∈
N
∖
K
∧
i
=
n
∧
j
=
Q
n
→
if
i
=
K
if
j
=
L
0
˙
B
i
A
j
=
n
A
Q
n
25
eldifi
⊢
n
∈
N
∖
K
→
n
∈
N
26
25
adantl
⊢
K
∈
N
∧
L
∈
N
∧
Q
∈
R
∧
n
∈
N
∖
K
→
n
∈
N
27
1
2
gsummatr01lem1
⊢
Q
∈
R
∧
n
∈
N
→
Q
n
∈
N
28
27
expcom
⊢
n
∈
N
→
Q
∈
R
→
Q
n
∈
N
29
28
25
syl11
⊢
Q
∈
R
→
n
∈
N
∖
K
→
Q
n
∈
N
30
29
3ad2ant3
⊢
K
∈
N
∧
L
∈
N
∧
Q
∈
R
→
n
∈
N
∖
K
→
Q
n
∈
N
31
30
imp
⊢
K
∈
N
∧
L
∈
N
∧
Q
∈
R
∧
n
∈
N
∖
K
→
Q
n
∈
N
32
ovexd
⊢
K
∈
N
∧
L
∈
N
∧
Q
∈
R
∧
n
∈
N
∖
K
→
n
A
Q
n
∈
V
33
12
24
26
31
32
ovmpod
⊢
K
∈
N
∧
L
∈
N
∧
Q
∈
R
∧
n
∈
N
∖
K
→
n
i
∈
N
,
j
∈
N
⟼
if
i
=
K
if
j
=
L
0
˙
B
i
A
j
Q
n
=
n
A
Q
n
34
33
3ad2antl3
⊢
G
∈
CMnd
∧
N
∈
Fin
∧
∀
i
∈
N
∀
j
∈
N
i
A
j
∈
S
∧
B
∈
S
∧
K
∈
N
∧
L
∈
N
∧
Q
∈
R
∧
n
∈
N
∖
K
→
n
i
∈
N
,
j
∈
N
⟼
if
i
=
K
if
j
=
L
0
˙
B
i
A
j
Q
n
=
n
A
Q
n
35
4
eleq2i
⊢
i
A
j
∈
S
↔
i
A
j
∈
Base
G
36
35
2ralbii
⊢
∀
i
∈
N
∀
j
∈
N
i
A
j
∈
S
↔
∀
i
∈
N
∀
j
∈
N
i
A
j
∈
Base
G
37
1
2
gsummatr01lem2
⊢
Q
∈
R
∧
n
∈
N
→
∀
i
∈
N
∀
j
∈
N
i
A
j
∈
Base
G
→
n
A
Q
n
∈
Base
G
38
25
37
sylan2
⊢
Q
∈
R
∧
n
∈
N
∖
K
→
∀
i
∈
N
∀
j
∈
N
i
A
j
∈
Base
G
→
n
A
Q
n
∈
Base
G
39
38
ex
⊢
Q
∈
R
→
n
∈
N
∖
K
→
∀
i
∈
N
∀
j
∈
N
i
A
j
∈
Base
G
→
n
A
Q
n
∈
Base
G
40
39
3ad2ant3
⊢
K
∈
N
∧
L
∈
N
∧
Q
∈
R
→
n
∈
N
∖
K
→
∀
i
∈
N
∀
j
∈
N
i
A
j
∈
Base
G
→
n
A
Q
n
∈
Base
G
41
40
com3r
⊢
∀
i
∈
N
∀
j
∈
N
i
A
j
∈
Base
G
→
K
∈
N
∧
L
∈
N
∧
Q
∈
R
→
n
∈
N
∖
K
→
n
A
Q
n
∈
Base
G
42
36
41
sylbi
⊢
∀
i
∈
N
∀
j
∈
N
i
A
j
∈
S
→
K
∈
N
∧
L
∈
N
∧
Q
∈
R
→
n
∈
N
∖
K
→
n
A
Q
n
∈
Base
G
43
42
adantr
⊢
∀
i
∈
N
∀
j
∈
N
i
A
j
∈
S
∧
B
∈
S
→
K
∈
N
∧
L
∈
N
∧
Q
∈
R
→
n
∈
N
∖
K
→
n
A
Q
n
∈
Base
G
44
43
imp31
⊢
∀
i
∈
N
∀
j
∈
N
i
A
j
∈
S
∧
B
∈
S
∧
K
∈
N
∧
L
∈
N
∧
Q
∈
R
∧
n
∈
N
∖
K
→
n
A
Q
n
∈
Base
G
45
44
3adantl1
⊢
G
∈
CMnd
∧
N
∈
Fin
∧
∀
i
∈
N
∀
j
∈
N
i
A
j
∈
S
∧
B
∈
S
∧
K
∈
N
∧
L
∈
N
∧
Q
∈
R
∧
n
∈
N
∖
K
→
n
A
Q
n
∈
Base
G
46
34
45
eqeltrd
⊢
G
∈
CMnd
∧
N
∈
Fin
∧
∀
i
∈
N
∀
j
∈
N
i
A
j
∈
S
∧
B
∈
S
∧
K
∈
N
∧
L
∈
N
∧
Q
∈
R
∧
n
∈
N
∖
K
→
n
i
∈
N
,
j
∈
N
⟼
if
i
=
K
if
j
=
L
0
˙
B
i
A
j
Q
n
∈
Base
G
47
simp31
⊢
G
∈
CMnd
∧
N
∈
Fin
∧
∀
i
∈
N
∀
j
∈
N
i
A
j
∈
S
∧
B
∈
S
∧
K
∈
N
∧
L
∈
N
∧
Q
∈
R
→
K
∈
N
48
neldifsnd
⊢
G
∈
CMnd
∧
N
∈
Fin
∧
∀
i
∈
N
∀
j
∈
N
i
A
j
∈
S
∧
B
∈
S
∧
K
∈
N
∧
L
∈
N
∧
Q
∈
R
→
¬
K
∈
N
∖
K
49
eqidd
⊢
B
∈
S
∧
K
∈
N
∧
L
∈
N
∧
Q
∈
R
→
i
∈
N
,
j
∈
N
⟼
if
i
=
K
if
j
=
L
0
˙
B
i
A
j
=
i
∈
N
,
j
∈
N
⟼
if
i
=
K
if
j
=
L
0
˙
B
i
A
j
50
iftrue
⊢
i
=
K
→
if
i
=
K
if
j
=
L
0
˙
B
i
A
j
=
if
j
=
L
0
˙
B
51
eqeq1
⊢
j
=
Q
K
→
j
=
L
↔
Q
K
=
L
52
51
ifbid
⊢
j
=
Q
K
→
if
j
=
L
0
˙
B
=
if
Q
K
=
L
0
˙
B
53
50
52
sylan9eq
⊢
i
=
K
∧
j
=
Q
K
→
if
i
=
K
if
j
=
L
0
˙
B
i
A
j
=
if
Q
K
=
L
0
˙
B
54
53
adantl
⊢
B
∈
S
∧
K
∈
N
∧
L
∈
N
∧
Q
∈
R
∧
i
=
K
∧
j
=
Q
K
→
if
i
=
K
if
j
=
L
0
˙
B
i
A
j
=
if
Q
K
=
L
0
˙
B
55
simpr1
⊢
B
∈
S
∧
K
∈
N
∧
L
∈
N
∧
Q
∈
R
→
K
∈
N
56
1
2
gsummatr01lem1
⊢
Q
∈
R
∧
K
∈
N
→
Q
K
∈
N
57
56
ancoms
⊢
K
∈
N
∧
Q
∈
R
→
Q
K
∈
N
58
57
3adant2
⊢
K
∈
N
∧
L
∈
N
∧
Q
∈
R
→
Q
K
∈
N
59
58
adantl
⊢
B
∈
S
∧
K
∈
N
∧
L
∈
N
∧
Q
∈
R
→
Q
K
∈
N
60
3
fvexi
⊢
0
˙
∈
V
61
simpl
⊢
B
∈
S
∧
K
∈
N
∧
L
∈
N
∧
Q
∈
R
→
B
∈
S
62
ifexg
⊢
0
˙
∈
V
∧
B
∈
S
→
if
Q
K
=
L
0
˙
B
∈
V
63
60
61
62
sylancr
⊢
B
∈
S
∧
K
∈
N
∧
L
∈
N
∧
Q
∈
R
→
if
Q
K
=
L
0
˙
B
∈
V
64
49
54
55
59
63
ovmpod
⊢
B
∈
S
∧
K
∈
N
∧
L
∈
N
∧
Q
∈
R
→
K
i
∈
N
,
j
∈
N
⟼
if
i
=
K
if
j
=
L
0
˙
B
i
A
j
Q
K
=
if
Q
K
=
L
0
˙
B
65
64
adantll
⊢
∀
i
∈
N
∀
j
∈
N
i
A
j
∈
S
∧
B
∈
S
∧
K
∈
N
∧
L
∈
N
∧
Q
∈
R
→
K
i
∈
N
,
j
∈
N
⟼
if
i
=
K
if
j
=
L
0
˙
B
i
A
j
Q
K
=
if
Q
K
=
L
0
˙
B
66
65
3adant1
⊢
G
∈
CMnd
∧
N
∈
Fin
∧
∀
i
∈
N
∀
j
∈
N
i
A
j
∈
S
∧
B
∈
S
∧
K
∈
N
∧
L
∈
N
∧
Q
∈
R
→
K
i
∈
N
,
j
∈
N
⟼
if
i
=
K
if
j
=
L
0
˙
B
i
A
j
Q
K
=
if
Q
K
=
L
0
˙
B
67
cmnmnd
⊢
G
∈
CMnd
→
G
∈
Mnd
68
5
3
mndidcl
⊢
G
∈
Mnd
→
0
˙
∈
Base
G
69
67
68
syl
⊢
G
∈
CMnd
→
0
˙
∈
Base
G
70
69
adantr
⊢
G
∈
CMnd
∧
N
∈
Fin
→
0
˙
∈
Base
G
71
70
3ad2ant1
⊢
G
∈
CMnd
∧
N
∈
Fin
∧
∀
i
∈
N
∀
j
∈
N
i
A
j
∈
S
∧
B
∈
S
∧
K
∈
N
∧
L
∈
N
∧
Q
∈
R
→
0
˙
∈
Base
G
72
4
eleq2i
⊢
B
∈
S
↔
B
∈
Base
G
73
72
biimpi
⊢
B
∈
S
→
B
∈
Base
G
74
73
adantl
⊢
∀
i
∈
N
∀
j
∈
N
i
A
j
∈
S
∧
B
∈
S
→
B
∈
Base
G
75
74
3ad2ant2
⊢
G
∈
CMnd
∧
N
∈
Fin
∧
∀
i
∈
N
∀
j
∈
N
i
A
j
∈
S
∧
B
∈
S
∧
K
∈
N
∧
L
∈
N
∧
Q
∈
R
→
B
∈
Base
G
76
71
75
ifcld
⊢
G
∈
CMnd
∧
N
∈
Fin
∧
∀
i
∈
N
∀
j
∈
N
i
A
j
∈
S
∧
B
∈
S
∧
K
∈
N
∧
L
∈
N
∧
Q
∈
R
→
if
Q
K
=
L
0
˙
B
∈
Base
G
77
66
76
eqeltrd
⊢
G
∈
CMnd
∧
N
∈
Fin
∧
∀
i
∈
N
∀
j
∈
N
i
A
j
∈
S
∧
B
∈
S
∧
K
∈
N
∧
L
∈
N
∧
Q
∈
R
→
K
i
∈
N
,
j
∈
N
⟼
if
i
=
K
if
j
=
L
0
˙
B
i
A
j
Q
K
∈
Base
G
78
id
⊢
n
=
K
→
n
=
K
79
fveq2
⊢
n
=
K
→
Q
n
=
Q
K
80
78
79
oveq12d
⊢
n
=
K
→
n
i
∈
N
,
j
∈
N
⟼
if
i
=
K
if
j
=
L
0
˙
B
i
A
j
Q
n
=
K
i
∈
N
,
j
∈
N
⟼
if
i
=
K
if
j
=
L
0
˙
B
i
A
j
Q
K
81
5
6
8
11
46
47
48
77
80
gsumunsn
⊢
G
∈
CMnd
∧
N
∈
Fin
∧
∀
i
∈
N
∀
j
∈
N
i
A
j
∈
S
∧
B
∈
S
∧
K
∈
N
∧
L
∈
N
∧
Q
∈
R
→
∑
G
n
∈
N
∖
K
∪
K
n
i
∈
N
,
j
∈
N
⟼
if
i
=
K
if
j
=
L
0
˙
B
i
A
j
Q
n
=
∑
G
n
∈
N
∖
K
n
i
∈
N
,
j
∈
N
⟼
if
i
=
K
if
j
=
L
0
˙
B
i
A
j
Q
n
+
G
K
i
∈
N
,
j
∈
N
⟼
if
i
=
K
if
j
=
L
0
˙
B
i
A
j
Q
K