Metamath Proof Explorer


Theorem gsummatr01lem3

Description: Lemma 1 for gsummatr01 . (Contributed by AV, 8-Jan-2019)

Ref Expression
Hypotheses gsummatr01.p P=BaseSymGrpN
gsummatr01.r R=rP|rK=L
gsummatr01.0 0˙=0G
gsummatr01.s S=BaseG
Assertion gsummatr01lem3 GCMndNFiniNjNiAjSBSKNLNQRGnNKKniN,jNifi=Kifj=L0˙BiAjQn=GnNKniN,jNifi=Kifj=L0˙BiAjQn+GKiN,jNifi=Kifj=L0˙BiAjQK

Proof

Step Hyp Ref Expression
1 gsummatr01.p P=BaseSymGrpN
2 gsummatr01.r R=rP|rK=L
3 gsummatr01.0 0˙=0G
4 gsummatr01.s S=BaseG
5 eqid BaseG=BaseG
6 eqid +G=+G
7 simpl GCMndNFinGCMnd
8 7 3ad2ant1 GCMndNFiniNjNiAjSBSKNLNQRGCMnd
9 diffi NFinNKFin
10 9 adantl GCMndNFinNKFin
11 10 3ad2ant1 GCMndNFiniNjNiAjSBSKNLNQRNKFin
12 eqidd KNLNQRnNKiN,jNifi=Kifj=L0˙BiAj=iN,jNifi=Kifj=L0˙BiAj
13 eqeq1 i=ni=Kn=K
14 13 adantr i=nj=Qni=Kn=K
15 eqeq1 j=Qnj=LQn=L
16 15 ifbid j=Qnifj=L0˙B=ifQn=L0˙B
17 16 adantl i=nj=Qnifj=L0˙B=ifQn=L0˙B
18 oveq12 i=nj=QniAj=nAQn
19 14 17 18 ifbieq12d i=nj=Qnifi=Kifj=L0˙BiAj=ifn=KifQn=L0˙BnAQn
20 eldifsni nNKnK
21 20 neneqd nNK¬n=K
22 21 iffalsed nNKifn=KifQn=L0˙BnAQn=nAQn
23 22 adantl KNLNQRnNKifn=KifQn=L0˙BnAQn=nAQn
24 19 23 sylan9eqr KNLNQRnNKi=nj=Qnifi=Kifj=L0˙BiAj=nAQn
25 eldifi nNKnN
26 25 adantl KNLNQRnNKnN
27 1 2 gsummatr01lem1 QRnNQnN
28 27 expcom nNQRQnN
29 28 25 syl11 QRnNKQnN
30 29 3ad2ant3 KNLNQRnNKQnN
31 30 imp KNLNQRnNKQnN
32 ovexd KNLNQRnNKnAQnV
33 12 24 26 31 32 ovmpod KNLNQRnNKniN,jNifi=Kifj=L0˙BiAjQn=nAQn
34 33 3ad2antl3 GCMndNFiniNjNiAjSBSKNLNQRnNKniN,jNifi=Kifj=L0˙BiAjQn=nAQn
35 4 eleq2i iAjSiAjBaseG
36 35 2ralbii iNjNiAjSiNjNiAjBaseG
37 1 2 gsummatr01lem2 QRnNiNjNiAjBaseGnAQnBaseG
38 25 37 sylan2 QRnNKiNjNiAjBaseGnAQnBaseG
39 38 ex QRnNKiNjNiAjBaseGnAQnBaseG
40 39 3ad2ant3 KNLNQRnNKiNjNiAjBaseGnAQnBaseG
41 40 com3r iNjNiAjBaseGKNLNQRnNKnAQnBaseG
42 36 41 sylbi iNjNiAjSKNLNQRnNKnAQnBaseG
43 42 adantr iNjNiAjSBSKNLNQRnNKnAQnBaseG
44 43 imp31 iNjNiAjSBSKNLNQRnNKnAQnBaseG
45 44 3adantl1 GCMndNFiniNjNiAjSBSKNLNQRnNKnAQnBaseG
46 34 45 eqeltrd GCMndNFiniNjNiAjSBSKNLNQRnNKniN,jNifi=Kifj=L0˙BiAjQnBaseG
47 simp31 GCMndNFiniNjNiAjSBSKNLNQRKN
48 neldifsnd GCMndNFiniNjNiAjSBSKNLNQR¬KNK
49 eqidd BSKNLNQRiN,jNifi=Kifj=L0˙BiAj=iN,jNifi=Kifj=L0˙BiAj
50 iftrue i=Kifi=Kifj=L0˙BiAj=ifj=L0˙B
51 eqeq1 j=QKj=LQK=L
52 51 ifbid j=QKifj=L0˙B=ifQK=L0˙B
53 50 52 sylan9eq i=Kj=QKifi=Kifj=L0˙BiAj=ifQK=L0˙B
54 53 adantl BSKNLNQRi=Kj=QKifi=Kifj=L0˙BiAj=ifQK=L0˙B
55 simpr1 BSKNLNQRKN
56 1 2 gsummatr01lem1 QRKNQKN
57 56 ancoms KNQRQKN
58 57 3adant2 KNLNQRQKN
59 58 adantl BSKNLNQRQKN
60 3 fvexi 0˙V
61 simpl BSKNLNQRBS
62 ifexg 0˙VBSifQK=L0˙BV
63 60 61 62 sylancr BSKNLNQRifQK=L0˙BV
64 49 54 55 59 63 ovmpod BSKNLNQRKiN,jNifi=Kifj=L0˙BiAjQK=ifQK=L0˙B
65 64 adantll iNjNiAjSBSKNLNQRKiN,jNifi=Kifj=L0˙BiAjQK=ifQK=L0˙B
66 65 3adant1 GCMndNFiniNjNiAjSBSKNLNQRKiN,jNifi=Kifj=L0˙BiAjQK=ifQK=L0˙B
67 cmnmnd GCMndGMnd
68 5 3 mndidcl GMnd0˙BaseG
69 67 68 syl GCMnd0˙BaseG
70 69 adantr GCMndNFin0˙BaseG
71 70 3ad2ant1 GCMndNFiniNjNiAjSBSKNLNQR0˙BaseG
72 4 eleq2i BSBBaseG
73 72 biimpi BSBBaseG
74 73 adantl iNjNiAjSBSBBaseG
75 74 3ad2ant2 GCMndNFiniNjNiAjSBSKNLNQRBBaseG
76 71 75 ifcld GCMndNFiniNjNiAjSBSKNLNQRifQK=L0˙BBaseG
77 66 76 eqeltrd GCMndNFiniNjNiAjSBSKNLNQRKiN,jNifi=Kifj=L0˙BiAjQKBaseG
78 id n=Kn=K
79 fveq2 n=KQn=QK
80 78 79 oveq12d n=KniN,jNifi=Kifj=L0˙BiAjQn=KiN,jNifi=Kifj=L0˙BiAjQK
81 5 6 8 11 46 47 48 77 80 gsumunsn GCMndNFiniNjNiAjSBSKNLNQRGnNKKniN,jNifi=Kifj=L0˙BiAjQn=GnNKniN,jNifi=Kifj=L0˙BiAjQn+GKiN,jNifi=Kifj=L0˙BiAjQK