Metamath Proof Explorer


Theorem hashtpg

Description: The size of an unordered triple of three different elements. (Contributed by Alexander van der Vekens, 10-Nov-2017) (Revised by AV, 18-Sep-2021)

Ref Expression
Assertion hashtpg AUBVCWABBCCAABC=3

Proof

Step Hyp Ref Expression
1 simpl3 AUBVCWABBCCACW
2 prfi ABFin
3 2 a1i AUBVCWABBCCAABFin
4 elprg CWCABC=AC=B
5 orcom C=AC=BC=BC=A
6 nne ¬BCB=C
7 eqcom B=CC=B
8 6 7 bitr2i C=B¬BC
9 nne ¬CAC=A
10 9 bicomi C=A¬CA
11 8 10 orbi12i C=BC=A¬BC¬CA
12 5 11 bitri C=AC=B¬BC¬CA
13 4 12 bitrdi CWCAB¬BC¬CA
14 13 biimpd CWCAB¬BC¬CA
15 14 3ad2ant3 AUBVCWCAB¬BC¬CA
16 15 imp AUBVCWCAB¬BC¬CA
17 16 olcd AUBVCWCAB¬AB¬BC¬CA
18 17 ex AUBVCWCAB¬AB¬BC¬CA
19 3orass ¬AB¬BC¬CA¬AB¬BC¬CA
20 18 19 syl6ibr AUBVCWCAB¬AB¬BC¬CA
21 3ianor ¬ABBCCA¬AB¬BC¬CA
22 20 21 syl6ibr AUBVCWCAB¬ABBCCA
23 22 con2d AUBVCWABBCCA¬CAB
24 23 imp AUBVCWABBCCA¬CAB
25 hashunsng CWABFin¬CABABC=AB+1
26 25 imp CWABFin¬CABABC=AB+1
27 1 3 24 26 syl12anc AUBVCWABBCCAABC=AB+1
28 simpr1 AUBVCWABBCCAAB
29 3simpa AUBVCWAUBV
30 29 adantr AUBVCWABBCCAAUBV
31 hashprg AUBVABAB=2
32 30 31 syl AUBVCWABBCCAABAB=2
33 28 32 mpbid AUBVCWABBCCAAB=2
34 33 oveq1d AUBVCWABBCCAAB+1=2+1
35 27 34 eqtrd AUBVCWABBCCAABC=2+1
36 df-tp ABC=ABC
37 36 fveq2i ABC=ABC
38 df-3 3=2+1
39 35 37 38 3eqtr4g AUBVCWABBCCAABC=3
40 39 ex AUBVCWABBCCAABC=3
41 nne ¬ABA=B
42 hashprlei BCFinBC2
43 prfi BCFin
44 hashcl BCFinBC0
45 44 nn0zd BCFinBC
46 43 45 ax-mp BC
47 2z 2
48 zleltp1 BC2BC2BC<2+1
49 2p1e3 2+1=3
50 49 a1i BC22+1=3
51 50 breq2d BC2BC<2+1BC<3
52 51 biimpd BC2BC<2+1BC<3
53 48 52 sylbid BC2BC2BC<3
54 46 47 53 mp2an BC2BC<3
55 44 nn0red BCFinBC
56 43 55 ax-mp BC
57 3re 3
58 56 57 ltnei BC<33BC
59 54 58 syl BC23BC
60 59 necomd BC2BC3
61 60 adantl BCFinBC2BC3
62 42 61 mp1i AUBVCWBC3
63 tpeq1 A=BABC=BBC
64 tpidm12 BBC=BC
65 63 64 eqtr2di A=BBC=ABC
66 65 fveq2d A=BBC=ABC
67 66 neeq1d A=BBC3ABC3
68 62 67 imbitrid A=BAUBVCWABC3
69 41 68 sylbi ¬ABAUBVCWABC3
70 hashprlei ACFinAC2
71 prfi ACFin
72 hashcl ACFinAC0
73 72 nn0zd ACFinAC
74 71 73 ax-mp AC
75 zleltp1 AC2AC2AC<2+1
76 49 a1i AC22+1=3
77 76 breq2d AC2AC<2+1AC<3
78 77 biimpd AC2AC<2+1AC<3
79 75 78 sylbid AC2AC2AC<3
80 74 47 79 mp2an AC2AC<3
81 72 nn0red ACFinAC
82 71 81 ax-mp AC
83 82 57 ltnei AC<33AC
84 80 83 syl AC23AC
85 84 necomd AC2AC3
86 85 adantl ACFinAC2AC3
87 70 86 mp1i AUBVCWAC3
88 tpeq2 B=CABC=ACC
89 tpidm23 ACC=AC
90 88 89 eqtr2di B=CAC=ABC
91 90 fveq2d B=CAC=ABC
92 91 neeq1d B=CAC3ABC3
93 87 92 imbitrid B=CAUBVCWABC3
94 6 93 sylbi ¬BCAUBVCWABC3
95 hashprlei ABFinAB2
96 hashcl ABFinAB0
97 96 nn0zd ABFinAB
98 2 97 ax-mp AB
99 zleltp1 AB2AB2AB<2+1
100 49 a1i AB22+1=3
101 100 breq2d AB2AB<2+1AB<3
102 101 biimpd AB2AB<2+1AB<3
103 99 102 sylbid AB2AB2AB<3
104 98 47 103 mp2an AB2AB<3
105 96 nn0red ABFinAB
106 2 105 ax-mp AB
107 106 57 ltnei AB<33AB
108 104 107 syl AB23AB
109 108 necomd AB2AB3
110 109 adantl ABFinAB2AB3
111 95 110 mp1i AUBVCWAB3
112 tpeq3 C=AABC=ABA
113 tpidm13 ABA=AB
114 112 113 eqtr2di C=AAB=ABC
115 114 fveq2d C=AAB=ABC
116 115 neeq1d C=AAB3ABC3
117 111 116 imbitrid C=AAUBVCWABC3
118 9 117 sylbi ¬CAAUBVCWABC3
119 69 94 118 3jaoi ¬AB¬BC¬CAAUBVCWABC3
120 21 119 sylbi ¬ABBCCAAUBVCWABC3
121 120 com12 AUBVCW¬ABBCCAABC3
122 121 necon4bd AUBVCWABC=3ABBCCA
123 40 122 impbid AUBVCWABBCCAABC=3