Metamath Proof Explorer


Theorem hashxpe

Description: The size of the Cartesian product of two finite sets is the product of their sizes. This is a version of hashxp valid for infinite sets, which uses extended real numbers. (Contributed by Thierry Arnoux, 27-May-2023)

Ref Expression
Assertion hashxpe A V B W A × B = A 𝑒 B

Proof

Step Hyp Ref Expression
1 simpr A V B W A Fin B Fin A Fin B Fin
2 hashxp A Fin B Fin A × B = A B
3 1 2 syl A V B W A Fin B Fin A × B = A B
4 nn0ssre 0
5 hashcl A Fin A 0
6 4 5 sseldi A Fin A
7 hashcl B Fin B 0
8 4 7 sseldi B Fin B
9 6 8 anim12i A Fin B Fin A B
10 1 9 syl A V B W A Fin B Fin A B
11 rexmul A B A 𝑒 B = A B
12 10 11 syl A V B W A Fin B Fin A 𝑒 B = A B
13 3 12 eqtr4d A V B W A Fin B Fin A × B = A 𝑒 B
14 simpr A V B W ¬ A Fin B = B =
15 14 xpeq2d A V B W ¬ A Fin B = A × B = A ×
16 xp0 A × =
17 15 16 syl6eq A V B W ¬ A Fin B = A × B =
18 17 fveq2d A V B W ¬ A Fin B = A × B =
19 hash0 = 0
20 18 19 syl6eq A V B W ¬ A Fin B = A × B = 0
21 simpl A V B W A V
22 hashinf A V ¬ A Fin A = +∞
23 21 22 sylan A V B W ¬ A Fin A = +∞
24 23 adantr A V B W ¬ A Fin B = A = +∞
25 14 fveq2d A V B W ¬ A Fin B = B =
26 25 19 syl6eq A V B W ¬ A Fin B = B = 0
27 24 26 oveq12d A V B W ¬ A Fin B = A 𝑒 B = +∞ 𝑒 0
28 pnfxr +∞ *
29 xmul01 +∞ * +∞ 𝑒 0 = 0
30 28 29 ax-mp +∞ 𝑒 0 = 0
31 27 30 syl6eq A V B W ¬ A Fin B = A 𝑒 B = 0
32 20 31 eqtr4d A V B W ¬ A Fin B = A × B = A 𝑒 B
33 simpr A V B W B W
34 33 ad2antrr A V B W ¬ A Fin B B W
35 hashxrcl B W B *
36 34 35 syl A V B W ¬ A Fin B B *
37 hashgt0 B W B 0 < B
38 34 37 sylancom A V B W ¬ A Fin B 0 < B
39 xmulpnf2 B * 0 < B +∞ 𝑒 B = +∞
40 36 38 39 syl2anc A V B W ¬ A Fin B +∞ 𝑒 B = +∞
41 23 adantr A V B W ¬ A Fin B A = +∞
42 41 oveq1d A V B W ¬ A Fin B A 𝑒 B = +∞ 𝑒 B
43 21 ad2antrr A V B W ¬ A Fin B A V
44 43 34 xpexd A V B W ¬ A Fin B A × B V
45 simplr A V B W ¬ A Fin B ¬ A Fin
46 0fin Fin
47 eleq1 A = A Fin Fin
48 46 47 mpbiri A = A Fin
49 48 necon3bi ¬ A Fin A
50 45 49 syl A V B W ¬ A Fin B A
51 simpr A V B W ¬ A Fin B B
52 ioran ¬ A = B = ¬ A = ¬ B =
53 xpeq0 A × B = A = B =
54 53 necon3abii A × B ¬ A = B =
55 df-ne A ¬ A =
56 df-ne B ¬ B =
57 55 56 anbi12i A B ¬ A = ¬ B =
58 52 54 57 3bitr4i A × B A B
59 58 biimpri A B A × B
60 50 51 59 syl2anc A V B W ¬ A Fin B A × B
61 45 intnanrd A V B W ¬ A Fin B ¬ A Fin B Fin
62 pm4.61 ¬ A × B A Fin B Fin A × B ¬ A Fin B Fin
63 xpfir A × B Fin A × B A Fin B Fin
64 63 ex A × B Fin A × B A Fin B Fin
65 64 con3i ¬ A × B A Fin B Fin ¬ A × B Fin
66 62 65 sylbir A × B ¬ A Fin B Fin ¬ A × B Fin
67 60 61 66 syl2anc A V B W ¬ A Fin B ¬ A × B Fin
68 hashinf A × B V ¬ A × B Fin A × B = +∞
69 44 67 68 syl2anc A V B W ¬ A Fin B A × B = +∞
70 40 42 69 3eqtr4rd A V B W ¬ A Fin B A × B = A 𝑒 B
71 exmidne B = B
72 71 a1i A V B W ¬ A Fin B = B
73 32 70 72 mpjaodan A V B W ¬ A Fin A × B = A 𝑒 B
74 73 adantlr A V B W ¬ A Fin B Fin ¬ A Fin A × B = A 𝑒 B
75 simpr A V B W ¬ B Fin A = A =
76 75 xpeq1d A V B W ¬ B Fin A = A × B = × B
77 0xp × B =
78 76 77 syl6eq A V B W ¬ B Fin A = A × B =
79 78 fveq2d A V B W ¬ B Fin A = A × B =
80 79 19 syl6eq A V B W ¬ B Fin A = A × B = 0
81 75 fveq2d A V B W ¬ B Fin A = A =
82 81 19 syl6eq A V B W ¬ B Fin A = A = 0
83 hashinf B W ¬ B Fin B = +∞
84 33 83 sylan A V B W ¬ B Fin B = +∞
85 84 adantr A V B W ¬ B Fin A = B = +∞
86 82 85 oveq12d A V B W ¬ B Fin A = A 𝑒 B = 0 𝑒 +∞
87 xmul02 +∞ * 0 𝑒 +∞ = 0
88 28 87 ax-mp 0 𝑒 +∞ = 0
89 86 88 syl6eq A V B W ¬ B Fin A = A 𝑒 B = 0
90 80 89 eqtr4d A V B W ¬ B Fin A = A × B = A 𝑒 B
91 hashxrcl A V A *
92 91 ad3antrrr A V B W ¬ B Fin A A *
93 hashgt0 A V A 0 < A
94 93 ad4ant14 A V B W ¬ B Fin A 0 < A
95 xmulpnf1 A * 0 < A A 𝑒 +∞ = +∞
96 92 94 95 syl2anc A V B W ¬ B Fin A A 𝑒 +∞ = +∞
97 84 adantr A V B W ¬ B Fin A B = +∞
98 97 oveq2d A V B W ¬ B Fin A A 𝑒 B = A 𝑒 +∞
99 21 ad2antrr A V B W ¬ B Fin A A V
100 33 ad2antrr A V B W ¬ B Fin A B W
101 99 100 xpexd A V B W ¬ B Fin A A × B V
102 simpr A V B W ¬ B Fin A A
103 simplr A V B W ¬ B Fin A ¬ B Fin
104 eleq1 B = B Fin Fin
105 46 104 mpbiri B = B Fin
106 105 necon3bi ¬ B Fin B
107 103 106 syl A V B W ¬ B Fin A B
108 102 107 59 syl2anc A V B W ¬ B Fin A A × B
109 103 intnand A V B W ¬ B Fin A ¬ A Fin B Fin
110 108 109 66 syl2anc A V B W ¬ B Fin A ¬ A × B Fin
111 101 110 68 syl2anc A V B W ¬ B Fin A A × B = +∞
112 96 98 111 3eqtr4rd A V B W ¬ B Fin A A × B = A 𝑒 B
113 exmidne A = A
114 113 a1i A V B W ¬ B Fin A = A
115 90 112 114 mpjaodan A V B W ¬ B Fin A × B = A 𝑒 B
116 115 adantlr A V B W ¬ A Fin B Fin ¬ B Fin A × B = A 𝑒 B
117 simpr A V B W ¬ A Fin B Fin ¬ A Fin B Fin
118 ianor ¬ A Fin B Fin ¬ A Fin ¬ B Fin
119 117 118 sylib A V B W ¬ A Fin B Fin ¬ A Fin ¬ B Fin
120 74 116 119 mpjaodan A V B W ¬ A Fin B Fin A × B = A 𝑒 B
121 exmidd A V B W A Fin B Fin ¬ A Fin B Fin
122 13 120 121 mpjaodan A V B W A × B = A 𝑒 B