| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpr |  | 
						
							| 2 |  | hashxp |  | 
						
							| 3 | 1 2 | syl |  | 
						
							| 4 |  | nn0ssre |  | 
						
							| 5 |  | hashcl |  | 
						
							| 6 | 4 5 | sselid |  | 
						
							| 7 |  | hashcl |  | 
						
							| 8 | 4 7 | sselid |  | 
						
							| 9 | 6 8 | anim12i |  | 
						
							| 10 | 1 9 | syl |  | 
						
							| 11 |  | rexmul |  | 
						
							| 12 | 10 11 | syl |  | 
						
							| 13 | 3 12 | eqtr4d |  | 
						
							| 14 |  | simpr |  | 
						
							| 15 | 14 | xpeq2d |  | 
						
							| 16 |  | xp0 |  | 
						
							| 17 | 15 16 | eqtrdi |  | 
						
							| 18 | 17 | fveq2d |  | 
						
							| 19 |  | hash0 |  | 
						
							| 20 | 18 19 | eqtrdi |  | 
						
							| 21 |  | simpl |  | 
						
							| 22 |  | hashinf |  | 
						
							| 23 | 21 22 | sylan |  | 
						
							| 24 | 23 | adantr |  | 
						
							| 25 | 14 | fveq2d |  | 
						
							| 26 | 25 19 | eqtrdi |  | 
						
							| 27 | 24 26 | oveq12d |  | 
						
							| 28 |  | pnfxr |  | 
						
							| 29 |  | xmul01 |  | 
						
							| 30 | 28 29 | ax-mp |  | 
						
							| 31 | 27 30 | eqtrdi |  | 
						
							| 32 | 20 31 | eqtr4d |  | 
						
							| 33 |  | simpr |  | 
						
							| 34 | 33 | ad2antrr |  | 
						
							| 35 |  | hashxrcl |  | 
						
							| 36 | 34 35 | syl |  | 
						
							| 37 |  | hashgt0 |  | 
						
							| 38 | 34 37 | sylancom |  | 
						
							| 39 |  | xmulpnf2 |  | 
						
							| 40 | 36 38 39 | syl2anc |  | 
						
							| 41 | 23 | adantr |  | 
						
							| 42 | 41 | oveq1d |  | 
						
							| 43 | 21 | ad2antrr |  | 
						
							| 44 | 43 34 | xpexd |  | 
						
							| 45 |  | simplr |  | 
						
							| 46 |  | 0fi |  | 
						
							| 47 |  | eleq1 |  | 
						
							| 48 | 46 47 | mpbiri |  | 
						
							| 49 | 48 | necon3bi |  | 
						
							| 50 | 45 49 | syl |  | 
						
							| 51 |  | simpr |  | 
						
							| 52 |  | ioran |  | 
						
							| 53 |  | xpeq0 |  | 
						
							| 54 | 53 | necon3abii |  | 
						
							| 55 |  | df-ne |  | 
						
							| 56 |  | df-ne |  | 
						
							| 57 | 55 56 | anbi12i |  | 
						
							| 58 | 52 54 57 | 3bitr4i |  | 
						
							| 59 | 58 | biimpri |  | 
						
							| 60 | 50 51 59 | syl2anc |  | 
						
							| 61 | 45 | intnanrd |  | 
						
							| 62 |  | pm4.61 |  | 
						
							| 63 |  | xpfir |  | 
						
							| 64 | 63 | ex |  | 
						
							| 65 | 64 | con3i |  | 
						
							| 66 | 62 65 | sylbir |  | 
						
							| 67 | 60 61 66 | syl2anc |  | 
						
							| 68 |  | hashinf |  | 
						
							| 69 | 44 67 68 | syl2anc |  | 
						
							| 70 | 40 42 69 | 3eqtr4rd |  | 
						
							| 71 |  | exmidne |  | 
						
							| 72 | 71 | a1i |  | 
						
							| 73 | 32 70 72 | mpjaodan |  | 
						
							| 74 | 73 | adantlr |  | 
						
							| 75 |  | simpr |  | 
						
							| 76 | 75 | xpeq1d |  | 
						
							| 77 |  | 0xp |  | 
						
							| 78 | 76 77 | eqtrdi |  | 
						
							| 79 | 78 | fveq2d |  | 
						
							| 80 | 79 19 | eqtrdi |  | 
						
							| 81 | 75 | fveq2d |  | 
						
							| 82 | 81 19 | eqtrdi |  | 
						
							| 83 |  | hashinf |  | 
						
							| 84 | 33 83 | sylan |  | 
						
							| 85 | 84 | adantr |  | 
						
							| 86 | 82 85 | oveq12d |  | 
						
							| 87 |  | xmul02 |  | 
						
							| 88 | 28 87 | ax-mp |  | 
						
							| 89 | 86 88 | eqtrdi |  | 
						
							| 90 | 80 89 | eqtr4d |  | 
						
							| 91 |  | hashxrcl |  | 
						
							| 92 | 91 | ad3antrrr |  | 
						
							| 93 |  | hashgt0 |  | 
						
							| 94 | 93 | ad4ant14 |  | 
						
							| 95 |  | xmulpnf1 |  | 
						
							| 96 | 92 94 95 | syl2anc |  | 
						
							| 97 | 84 | adantr |  | 
						
							| 98 | 97 | oveq2d |  | 
						
							| 99 | 21 | ad2antrr |  | 
						
							| 100 | 33 | ad2antrr |  | 
						
							| 101 | 99 100 | xpexd |  | 
						
							| 102 |  | simpr |  | 
						
							| 103 |  | simplr |  | 
						
							| 104 |  | eleq1 |  | 
						
							| 105 | 46 104 | mpbiri |  | 
						
							| 106 | 105 | necon3bi |  | 
						
							| 107 | 103 106 | syl |  | 
						
							| 108 | 102 107 59 | syl2anc |  | 
						
							| 109 | 103 | intnand |  | 
						
							| 110 | 108 109 66 | syl2anc |  | 
						
							| 111 | 101 110 68 | syl2anc |  | 
						
							| 112 | 96 98 111 | 3eqtr4rd |  | 
						
							| 113 |  | exmidne |  | 
						
							| 114 | 113 | a1i |  | 
						
							| 115 | 90 112 114 | mpjaodan |  | 
						
							| 116 | 115 | adantlr |  | 
						
							| 117 |  | simpr |  | 
						
							| 118 |  | ianor |  | 
						
							| 119 | 117 118 | sylib |  | 
						
							| 120 | 74 116 119 | mpjaodan |  | 
						
							| 121 |  | exmidd |  | 
						
							| 122 | 13 120 121 | mpjaodan |  |