Metamath Proof Explorer


Theorem hdmap14lem6

Description: Case where F is zero. (Contributed by NM, 1-Jun-2015)

Ref Expression
Hypotheses hdmap14lem1.h H=LHypK
hdmap14lem1.u U=DVecHKW
hdmap14lem1.v V=BaseU
hdmap14lem1.t ·˙=U
hdmap14lem3.o 0˙=0U
hdmap14lem1.r R=ScalarU
hdmap14lem1.b B=BaseR
hdmap14lem1.z Z=0R
hdmap14lem1.c C=LCDualKW
hdmap14lem2.e ˙=C
hdmap14lem1.l L=LSpanC
hdmap14lem2.p P=ScalarC
hdmap14lem2.a A=BaseP
hdmap14lem2.q Q=0P
hdmap14lem1.s S=HDMapKW
hdmap14lem1.k φKHLWH
hdmap14lem3.x φXV0˙
hdmap14lem6.f φF=Z
Assertion hdmap14lem6 φ∃!gASF·˙X=g˙SX

Proof

Step Hyp Ref Expression
1 hdmap14lem1.h H=LHypK
2 hdmap14lem1.u U=DVecHKW
3 hdmap14lem1.v V=BaseU
4 hdmap14lem1.t ·˙=U
5 hdmap14lem3.o 0˙=0U
6 hdmap14lem1.r R=ScalarU
7 hdmap14lem1.b B=BaseR
8 hdmap14lem1.z Z=0R
9 hdmap14lem1.c C=LCDualKW
10 hdmap14lem2.e ˙=C
11 hdmap14lem1.l L=LSpanC
12 hdmap14lem2.p P=ScalarC
13 hdmap14lem2.a A=BaseP
14 hdmap14lem2.q Q=0P
15 hdmap14lem1.s S=HDMapKW
16 hdmap14lem1.k φKHLWH
17 hdmap14lem3.x φXV0˙
18 hdmap14lem6.f φF=Z
19 1 9 16 lcdlmod φCLMod
20 12 13 14 lmod0cl CLModQA
21 19 20 syl φQA
22 eqid BaseC=BaseC
23 17 eldifad φXV
24 1 2 3 9 22 15 16 23 hdmapcl φSXBaseC
25 eqid 0C=0C
26 22 12 10 14 25 lmod0vs CLModSXBaseCQ˙SX=0C
27 19 24 26 syl2anc φQ˙SX=0C
28 27 eqcomd φ0C=Q˙SX
29 oveq1 g=Qg˙SX=Q˙SX
30 29 rspceeqv QA0C=Q˙SXgA0C=g˙SX
31 21 28 30 syl2anc φgA0C=g˙SX
32 1 2 3 5 9 25 22 15 16 17 hdmapnzcl φSXBaseC0C
33 eldifsni SXBaseC0CSX0C
34 32 33 syl φSX0C
35 34 neneqd φ¬SX=0C
36 35 3ad2ant1 φgAhA0C=g˙SX0C=h˙SX¬SX=0C
37 simp3l φgAhA0C=g˙SX0C=h˙SX0C=g˙SX
38 37 eqcomd φgAhA0C=g˙SX0C=h˙SXg˙SX=0C
39 1 9 16 lcdlvec φCLVec
40 39 3ad2ant1 φgAhA0C=g˙SX0C=h˙SXCLVec
41 simp2l φgAhA0C=g˙SX0C=h˙SXgA
42 24 3ad2ant1 φgAhA0C=g˙SX0C=h˙SXSXBaseC
43 22 10 12 13 14 25 40 41 42 lvecvs0or φgAhA0C=g˙SX0C=h˙SXg˙SX=0Cg=QSX=0C
44 38 43 mpbid φgAhA0C=g˙SX0C=h˙SXg=QSX=0C
45 44 orcomd φgAhA0C=g˙SX0C=h˙SXSX=0Cg=Q
46 45 ord φgAhA0C=g˙SX0C=h˙SX¬SX=0Cg=Q
47 36 46 mpd φgAhA0C=g˙SX0C=h˙SXg=Q
48 simp3r φgAhA0C=g˙SX0C=h˙SX0C=h˙SX
49 48 eqcomd φgAhA0C=g˙SX0C=h˙SXh˙SX=0C
50 simp2r φgAhA0C=g˙SX0C=h˙SXhA
51 22 10 12 13 14 25 40 50 42 lvecvs0or φgAhA0C=g˙SX0C=h˙SXh˙SX=0Ch=QSX=0C
52 49 51 mpbid φgAhA0C=g˙SX0C=h˙SXh=QSX=0C
53 52 orcomd φgAhA0C=g˙SX0C=h˙SXSX=0Ch=Q
54 53 ord φgAhA0C=g˙SX0C=h˙SX¬SX=0Ch=Q
55 36 54 mpd φgAhA0C=g˙SX0C=h˙SXh=Q
56 47 55 eqtr4d φgAhA0C=g˙SX0C=h˙SXg=h
57 56 3exp φgAhA0C=g˙SX0C=h˙SXg=h
58 57 ralrimivv φgAhA0C=g˙SX0C=h˙SXg=h
59 oveq1 g=hg˙SX=h˙SX
60 59 eqeq2d g=h0C=g˙SX0C=h˙SX
61 60 reu4 ∃!gA0C=g˙SXgA0C=g˙SXgAhA0C=g˙SX0C=h˙SXg=h
62 31 58 61 sylanbrc φ∃!gA0C=g˙SX
63 18 oveq1d φF·˙X=Z·˙X
64 1 2 16 dvhlmod φULMod
65 3 6 4 8 5 lmod0vs ULModXVZ·˙X=0˙
66 64 23 65 syl2anc φZ·˙X=0˙
67 63 66 eqtrd φF·˙X=0˙
68 67 fveq2d φSF·˙X=S0˙
69 1 2 5 9 25 15 16 hdmapval0 φS0˙=0C
70 68 69 eqtrd φSF·˙X=0C
71 70 eqeq1d φSF·˙X=g˙SX0C=g˙SX
72 71 reubidv φ∃!gASF·˙X=g˙SX∃!gA0C=g˙SX
73 62 72 mpbird φ∃!gASF·˙X=g˙SX