Metamath Proof Explorer


Theorem hdmap1fval

Description: Preliminary map from vectors to functionals in the closed kernel dual space. TODO: change span J to the convention L for this section. (Contributed by NM, 15-May-2015)

Ref Expression
Hypotheses hdmap1val.h H=LHypK
hdmap1fval.u U=DVecHKW
hdmap1fval.v V=BaseU
hdmap1fval.s -˙=-U
hdmap1fval.o 0˙=0U
hdmap1fval.n N=LSpanU
hdmap1fval.c C=LCDualKW
hdmap1fval.d D=BaseC
hdmap1fval.r R=-C
hdmap1fval.q Q=0C
hdmap1fval.j J=LSpanC
hdmap1fval.m M=mapdKW
hdmap1fval.i I=HDMap1KW
hdmap1fval.k φKAWH
Assertion hdmap1fval φI=xV×D×Vif2ndx=0˙QιhD|MN2ndx=JhMN1st1stx-˙2ndx=J2nd1stxRh

Proof

Step Hyp Ref Expression
1 hdmap1val.h H=LHypK
2 hdmap1fval.u U=DVecHKW
3 hdmap1fval.v V=BaseU
4 hdmap1fval.s -˙=-U
5 hdmap1fval.o 0˙=0U
6 hdmap1fval.n N=LSpanU
7 hdmap1fval.c C=LCDualKW
8 hdmap1fval.d D=BaseC
9 hdmap1fval.r R=-C
10 hdmap1fval.q Q=0C
11 hdmap1fval.j J=LSpanC
12 hdmap1fval.m M=mapdKW
13 hdmap1fval.i I=HDMap1KW
14 hdmap1fval.k φKAWH
15 1 hdmap1ffval KAHDMap1K=wHa|[˙DVecHKw/u]˙[˙Baseu/v]˙[˙LSpanu/n]˙[˙LCDualKw/c]˙[˙Basec/d]˙[˙LSpanc/j]˙[˙mapdKw/m]˙axv×d×vif2ndx=0u0cιhd|mn2ndx=jhmn1st1stx-u2ndx=j2nd1stx-ch
16 15 fveq1d KAHDMap1KW=wHa|[˙DVecHKw/u]˙[˙Baseu/v]˙[˙LSpanu/n]˙[˙LCDualKw/c]˙[˙Basec/d]˙[˙LSpanc/j]˙[˙mapdKw/m]˙axv×d×vif2ndx=0u0cιhd|mn2ndx=jhmn1st1stx-u2ndx=j2nd1stx-chW
17 13 16 eqtrid KAI=wHa|[˙DVecHKw/u]˙[˙Baseu/v]˙[˙LSpanu/n]˙[˙LCDualKw/c]˙[˙Basec/d]˙[˙LSpanc/j]˙[˙mapdKw/m]˙axv×d×vif2ndx=0u0cιhd|mn2ndx=jhmn1st1stx-u2ndx=j2nd1stx-chW
18 fveq2 w=WDVecHKw=DVecHKW
19 fveq2 w=WLCDualKw=LCDualKW
20 fveq2 w=WmapdKw=mapdKW
21 20 sbceq1d w=W[˙mapdKw/m]˙axv×d×vif2ndx=0u0cιhd|mn2ndx=jhmn1st1stx-u2ndx=j2nd1stx-ch[˙mapdKW/m]˙axv×d×vif2ndx=0u0cιhd|mn2ndx=jhmn1st1stx-u2ndx=j2nd1stx-ch
22 21 sbcbidv w=W[˙LSpanc/j]˙[˙mapdKw/m]˙axv×d×vif2ndx=0u0cιhd|mn2ndx=jhmn1st1stx-u2ndx=j2nd1stx-ch[˙LSpanc/j]˙[˙mapdKW/m]˙axv×d×vif2ndx=0u0cιhd|mn2ndx=jhmn1st1stx-u2ndx=j2nd1stx-ch
23 22 sbcbidv w=W[˙Basec/d]˙[˙LSpanc/j]˙[˙mapdKw/m]˙axv×d×vif2ndx=0u0cιhd|mn2ndx=jhmn1st1stx-u2ndx=j2nd1stx-ch[˙Basec/d]˙[˙LSpanc/j]˙[˙mapdKW/m]˙axv×d×vif2ndx=0u0cιhd|mn2ndx=jhmn1st1stx-u2ndx=j2nd1stx-ch
24 19 23 sbceqbid w=W[˙LCDualKw/c]˙[˙Basec/d]˙[˙LSpanc/j]˙[˙mapdKw/m]˙axv×d×vif2ndx=0u0cιhd|mn2ndx=jhmn1st1stx-u2ndx=j2nd1stx-ch[˙LCDualKW/c]˙[˙Basec/d]˙[˙LSpanc/j]˙[˙mapdKW/m]˙axv×d×vif2ndx=0u0cιhd|mn2ndx=jhmn1st1stx-u2ndx=j2nd1stx-ch
25 24 sbcbidv w=W[˙LSpanu/n]˙[˙LCDualKw/c]˙[˙Basec/d]˙[˙LSpanc/j]˙[˙mapdKw/m]˙axv×d×vif2ndx=0u0cιhd|mn2ndx=jhmn1st1stx-u2ndx=j2nd1stx-ch[˙LSpanu/n]˙[˙LCDualKW/c]˙[˙Basec/d]˙[˙LSpanc/j]˙[˙mapdKW/m]˙axv×d×vif2ndx=0u0cιhd|mn2ndx=jhmn1st1stx-u2ndx=j2nd1stx-ch
26 25 sbcbidv w=W[˙Baseu/v]˙[˙LSpanu/n]˙[˙LCDualKw/c]˙[˙Basec/d]˙[˙LSpanc/j]˙[˙mapdKw/m]˙axv×d×vif2ndx=0u0cιhd|mn2ndx=jhmn1st1stx-u2ndx=j2nd1stx-ch[˙Baseu/v]˙[˙LSpanu/n]˙[˙LCDualKW/c]˙[˙Basec/d]˙[˙LSpanc/j]˙[˙mapdKW/m]˙axv×d×vif2ndx=0u0cιhd|mn2ndx=jhmn1st1stx-u2ndx=j2nd1stx-ch
27 18 26 sbceqbid w=W[˙DVecHKw/u]˙[˙Baseu/v]˙[˙LSpanu/n]˙[˙LCDualKw/c]˙[˙Basec/d]˙[˙LSpanc/j]˙[˙mapdKw/m]˙axv×d×vif2ndx=0u0cιhd|mn2ndx=jhmn1st1stx-u2ndx=j2nd1stx-ch[˙DVecHKW/u]˙[˙Baseu/v]˙[˙LSpanu/n]˙[˙LCDualKW/c]˙[˙Basec/d]˙[˙LSpanc/j]˙[˙mapdKW/m]˙axv×d×vif2ndx=0u0cιhd|mn2ndx=jhmn1st1stx-u2ndx=j2nd1stx-ch
28 fvex DVecHKWV
29 fvex BaseuV
30 fvex LSpanuV
31 2 eqeq2i u=Uu=DVecHKW
32 31 biimpri u=DVecHKWu=U
33 32 3ad2ant1 u=DVecHKWv=Baseun=LSpanuu=U
34 simp2 u=DVecHKWv=Baseun=LSpanuv=Baseu
35 32 fveq2d u=DVecHKWBaseu=BaseU
36 35 3ad2ant1 u=DVecHKWv=Baseun=LSpanuBaseu=BaseU
37 34 36 eqtrd u=DVecHKWv=Baseun=LSpanuv=BaseU
38 37 3 eqtr4di u=DVecHKWv=Baseun=LSpanuv=V
39 simp3 u=DVecHKWv=Baseun=LSpanun=LSpanu
40 33 fveq2d u=DVecHKWv=Baseun=LSpanuLSpanu=LSpanU
41 39 40 eqtrd u=DVecHKWv=Baseun=LSpanun=LSpanU
42 41 6 eqtr4di u=DVecHKWv=Baseun=LSpanun=N
43 fvex LCDualKWV
44 fvex BasecV
45 fvex LSpancV
46 id c=LCDualKWc=LCDualKW
47 46 7 eqtr4di c=LCDualKWc=C
48 47 3ad2ant1 c=LCDualKWd=Basecj=LSpancc=C
49 simp2 c=LCDualKWd=Basecj=LSpancd=Basec
50 48 fveq2d c=LCDualKWd=Basecj=LSpancBasec=BaseC
51 50 8 eqtr4di c=LCDualKWd=Basecj=LSpancBasec=D
52 49 51 eqtrd c=LCDualKWd=Basecj=LSpancd=D
53 simp3 c=LCDualKWd=Basecj=LSpancj=LSpanc
54 48 fveq2d c=LCDualKWd=Basecj=LSpancLSpanc=LSpanC
55 54 11 eqtr4di c=LCDualKWd=Basecj=LSpancLSpanc=J
56 53 55 eqtrd c=LCDualKWd=Basecj=LSpancj=J
57 fvex mapdKWV
58 id m=mapdKWm=mapdKW
59 58 12 eqtr4di m=mapdKWm=M
60 fveq1 m=Mmn2ndx=Mn2ndx
61 60 eqeq1d m=Mmn2ndx=jhMn2ndx=jh
62 fveq1 m=Mmn1st1stx-u2ndx=Mn1st1stx-u2ndx
63 62 eqeq1d m=Mmn1st1stx-u2ndx=j2nd1stx-chMn1st1stx-u2ndx=j2nd1stx-ch
64 61 63 anbi12d m=Mmn2ndx=jhmn1st1stx-u2ndx=j2nd1stx-chMn2ndx=jhMn1st1stx-u2ndx=j2nd1stx-ch
65 64 riotabidv m=Mιhd|mn2ndx=jhmn1st1stx-u2ndx=j2nd1stx-ch=ιhd|Mn2ndx=jhMn1st1stx-u2ndx=j2nd1stx-ch
66 65 ifeq2d m=Mif2ndx=0u0cιhd|mn2ndx=jhmn1st1stx-u2ndx=j2nd1stx-ch=if2ndx=0u0cιhd|Mn2ndx=jhMn1st1stx-u2ndx=j2nd1stx-ch
67 66 mpteq2dv m=Mxv×d×vif2ndx=0u0cιhd|mn2ndx=jhmn1st1stx-u2ndx=j2nd1stx-ch=xv×d×vif2ndx=0u0cιhd|Mn2ndx=jhMn1st1stx-u2ndx=j2nd1stx-ch
68 67 eleq2d m=Maxv×d×vif2ndx=0u0cιhd|mn2ndx=jhmn1st1stx-u2ndx=j2nd1stx-chaxv×d×vif2ndx=0u0cιhd|Mn2ndx=jhMn1st1stx-u2ndx=j2nd1stx-ch
69 59 68 syl m=mapdKWaxv×d×vif2ndx=0u0cιhd|mn2ndx=jhmn1st1stx-u2ndx=j2nd1stx-chaxv×d×vif2ndx=0u0cιhd|Mn2ndx=jhMn1st1stx-u2ndx=j2nd1stx-ch
70 57 69 sbcie [˙mapdKW/m]˙axv×d×vif2ndx=0u0cιhd|mn2ndx=jhmn1st1stx-u2ndx=j2nd1stx-chaxv×d×vif2ndx=0u0cιhd|Mn2ndx=jhMn1st1stx-u2ndx=j2nd1stx-ch
71 simp2 c=Cd=Dj=Jd=D
72 xpeq2 d=Dv×d=v×D
73 72 xpeq1d d=Dv×d×v=v×D×v
74 71 73 syl c=Cd=Dj=Jv×d×v=v×D×v
75 simp1 c=Cd=Dj=Jc=C
76 75 fveq2d c=Cd=Dj=J0c=0C
77 76 10 eqtr4di c=Cd=Dj=J0c=Q
78 simp3 c=Cd=Dj=Jj=J
79 78 fveq1d c=Cd=Dj=Jjh=Jh
80 79 eqeq2d c=Cd=Dj=JMn2ndx=jhMn2ndx=Jh
81 75 fveq2d c=Cd=Dj=J-c=-C
82 81 9 eqtr4di c=Cd=Dj=J-c=R
83 82 oveqd c=Cd=Dj=J2nd1stx-ch=2nd1stxRh
84 83 sneqd c=Cd=Dj=J2nd1stx-ch=2nd1stxRh
85 78 84 fveq12d c=Cd=Dj=Jj2nd1stx-ch=J2nd1stxRh
86 85 eqeq2d c=Cd=Dj=JMn1st1stx-u2ndx=j2nd1stx-chMn1st1stx-u2ndx=J2nd1stxRh
87 80 86 anbi12d c=Cd=Dj=JMn2ndx=jhMn1st1stx-u2ndx=j2nd1stx-chMn2ndx=JhMn1st1stx-u2ndx=J2nd1stxRh
88 71 87 riotaeqbidv c=Cd=Dj=Jιhd|Mn2ndx=jhMn1st1stx-u2ndx=j2nd1stx-ch=ιhD|Mn2ndx=JhMn1st1stx-u2ndx=J2nd1stxRh
89 77 88 ifeq12d c=Cd=Dj=Jif2ndx=0u0cιhd|Mn2ndx=jhMn1st1stx-u2ndx=j2nd1stx-ch=if2ndx=0uQιhD|Mn2ndx=JhMn1st1stx-u2ndx=J2nd1stxRh
90 74 89 mpteq12dv c=Cd=Dj=Jxv×d×vif2ndx=0u0cιhd|Mn2ndx=jhMn1st1stx-u2ndx=j2nd1stx-ch=xv×D×vif2ndx=0uQιhD|Mn2ndx=JhMn1st1stx-u2ndx=J2nd1stxRh
91 90 eleq2d c=Cd=Dj=Jaxv×d×vif2ndx=0u0cιhd|Mn2ndx=jhMn1st1stx-u2ndx=j2nd1stx-chaxv×D×vif2ndx=0uQιhD|Mn2ndx=JhMn1st1stx-u2ndx=J2nd1stxRh
92 70 91 bitrid c=Cd=Dj=J[˙mapdKW/m]˙axv×d×vif2ndx=0u0cιhd|mn2ndx=jhmn1st1stx-u2ndx=j2nd1stx-chaxv×D×vif2ndx=0uQιhD|Mn2ndx=JhMn1st1stx-u2ndx=J2nd1stxRh
93 48 52 56 92 syl3anc c=LCDualKWd=Basecj=LSpanc[˙mapdKW/m]˙axv×d×vif2ndx=0u0cιhd|mn2ndx=jhmn1st1stx-u2ndx=j2nd1stx-chaxv×D×vif2ndx=0uQιhD|Mn2ndx=JhMn1st1stx-u2ndx=J2nd1stxRh
94 43 44 45 93 sbc3ie [˙LCDualKW/c]˙[˙Basec/d]˙[˙LSpanc/j]˙[˙mapdKW/m]˙axv×d×vif2ndx=0u0cιhd|mn2ndx=jhmn1st1stx-u2ndx=j2nd1stx-chaxv×D×vif2ndx=0uQιhD|Mn2ndx=JhMn1st1stx-u2ndx=J2nd1stxRh
95 simp2 u=Uv=Vn=Nv=V
96 95 xpeq1d u=Uv=Vn=Nv×D=V×D
97 96 95 xpeq12d u=Uv=Vn=Nv×D×v=V×D×V
98 simp1 u=Uv=Vn=Nu=U
99 98 fveq2d u=Uv=Vn=N0u=0U
100 99 5 eqtr4di u=Uv=Vn=N0u=0˙
101 100 eqeq2d u=Uv=Vn=N2ndx=0u2ndx=0˙
102 simp3 u=Uv=Vn=Nn=N
103 102 fveq1d u=Uv=Vn=Nn2ndx=N2ndx
104 103 fveqeq2d u=Uv=Vn=NMn2ndx=JhMN2ndx=Jh
105 98 fveq2d u=Uv=Vn=N-u=-U
106 105 4 eqtr4di u=Uv=Vn=N-u=-˙
107 106 oveqd u=Uv=Vn=N1st1stx-u2ndx=1st1stx-˙2ndx
108 107 sneqd u=Uv=Vn=N1st1stx-u2ndx=1st1stx-˙2ndx
109 102 108 fveq12d u=Uv=Vn=Nn1st1stx-u2ndx=N1st1stx-˙2ndx
110 109 fveqeq2d u=Uv=Vn=NMn1st1stx-u2ndx=J2nd1stxRhMN1st1stx-˙2ndx=J2nd1stxRh
111 104 110 anbi12d u=Uv=Vn=NMn2ndx=JhMn1st1stx-u2ndx=J2nd1stxRhMN2ndx=JhMN1st1stx-˙2ndx=J2nd1stxRh
112 111 riotabidv u=Uv=Vn=NιhD|Mn2ndx=JhMn1st1stx-u2ndx=J2nd1stxRh=ιhD|MN2ndx=JhMN1st1stx-˙2ndx=J2nd1stxRh
113 101 112 ifbieq2d u=Uv=Vn=Nif2ndx=0uQιhD|Mn2ndx=JhMn1st1stx-u2ndx=J2nd1stxRh=if2ndx=0˙QιhD|MN2ndx=JhMN1st1stx-˙2ndx=J2nd1stxRh
114 97 113 mpteq12dv u=Uv=Vn=Nxv×D×vif2ndx=0uQιhD|Mn2ndx=JhMn1st1stx-u2ndx=J2nd1stxRh=xV×D×Vif2ndx=0˙QιhD|MN2ndx=JhMN1st1stx-˙2ndx=J2nd1stxRh
115 114 eleq2d u=Uv=Vn=Naxv×D×vif2ndx=0uQιhD|Mn2ndx=JhMn1st1stx-u2ndx=J2nd1stxRhaxV×D×Vif2ndx=0˙QιhD|MN2ndx=JhMN1st1stx-˙2ndx=J2nd1stxRh
116 94 115 bitrid u=Uv=Vn=N[˙LCDualKW/c]˙[˙Basec/d]˙[˙LSpanc/j]˙[˙mapdKW/m]˙axv×d×vif2ndx=0u0cιhd|mn2ndx=jhmn1st1stx-u2ndx=j2nd1stx-chaxV×D×Vif2ndx=0˙QιhD|MN2ndx=JhMN1st1stx-˙2ndx=J2nd1stxRh
117 33 38 42 116 syl3anc u=DVecHKWv=Baseun=LSpanu[˙LCDualKW/c]˙[˙Basec/d]˙[˙LSpanc/j]˙[˙mapdKW/m]˙axv×d×vif2ndx=0u0cιhd|mn2ndx=jhmn1st1stx-u2ndx=j2nd1stx-chaxV×D×Vif2ndx=0˙QιhD|MN2ndx=JhMN1st1stx-˙2ndx=J2nd1stxRh
118 28 29 30 117 sbc3ie [˙DVecHKW/u]˙[˙Baseu/v]˙[˙LSpanu/n]˙[˙LCDualKW/c]˙[˙Basec/d]˙[˙LSpanc/j]˙[˙mapdKW/m]˙axv×d×vif2ndx=0u0cιhd|mn2ndx=jhmn1st1stx-u2ndx=j2nd1stx-chaxV×D×Vif2ndx=0˙QιhD|MN2ndx=JhMN1st1stx-˙2ndx=J2nd1stxRh
119 27 118 bitrdi w=W[˙DVecHKw/u]˙[˙Baseu/v]˙[˙LSpanu/n]˙[˙LCDualKw/c]˙[˙Basec/d]˙[˙LSpanc/j]˙[˙mapdKw/m]˙axv×d×vif2ndx=0u0cιhd|mn2ndx=jhmn1st1stx-u2ndx=j2nd1stx-chaxV×D×Vif2ndx=0˙QιhD|MN2ndx=JhMN1st1stx-˙2ndx=J2nd1stxRh
120 119 eqabcdv w=Wa|[˙DVecHKw/u]˙[˙Baseu/v]˙[˙LSpanu/n]˙[˙LCDualKw/c]˙[˙Basec/d]˙[˙LSpanc/j]˙[˙mapdKw/m]˙axv×d×vif2ndx=0u0cιhd|mn2ndx=jhmn1st1stx-u2ndx=j2nd1stx-ch=xV×D×Vif2ndx=0˙QιhD|MN2ndx=JhMN1st1stx-˙2ndx=J2nd1stxRh
121 eqid wHa|[˙DVecHKw/u]˙[˙Baseu/v]˙[˙LSpanu/n]˙[˙LCDualKw/c]˙[˙Basec/d]˙[˙LSpanc/j]˙[˙mapdKw/m]˙axv×d×vif2ndx=0u0cιhd|mn2ndx=jhmn1st1stx-u2ndx=j2nd1stx-ch=wHa|[˙DVecHKw/u]˙[˙Baseu/v]˙[˙LSpanu/n]˙[˙LCDualKw/c]˙[˙Basec/d]˙[˙LSpanc/j]˙[˙mapdKw/m]˙axv×d×vif2ndx=0u0cιhd|mn2ndx=jhmn1st1stx-u2ndx=j2nd1stx-ch
122 3 fvexi VV
123 8 fvexi DV
124 122 123 xpex V×DV
125 124 122 xpex V×D×VV
126 125 mptex xV×D×Vif2ndx=0˙QιhD|MN2ndx=JhMN1st1stx-˙2ndx=J2nd1stxRhV
127 120 121 126 fvmpt WHwHa|[˙DVecHKw/u]˙[˙Baseu/v]˙[˙LSpanu/n]˙[˙LCDualKw/c]˙[˙Basec/d]˙[˙LSpanc/j]˙[˙mapdKw/m]˙axv×d×vif2ndx=0u0cιhd|mn2ndx=jhmn1st1stx-u2ndx=j2nd1stx-chW=xV×D×Vif2ndx=0˙QιhD|MN2ndx=JhMN1st1stx-˙2ndx=J2nd1stxRh
128 17 127 sylan9eq KAWHI=xV×D×Vif2ndx=0˙QιhD|MN2ndx=JhMN1st1stx-˙2ndx=J2nd1stxRh
129 14 128 syl φI=xV×D×Vif2ndx=0˙QιhD|MN2ndx=JhMN1st1stx-˙2ndx=J2nd1stxRh