Metamath Proof Explorer


Theorem hgmapadd

Description: Part 15 of Baer p. 50 line 13. (Contributed by NM, 6-Jun-2015)

Ref Expression
Hypotheses hgmapadd.h H=LHypK
hgmapadd.u U=DVecHKW
hgmapadd.r R=ScalarU
hgmapadd.b B=BaseR
hgmapadd.p +˙=+R
hgmapadd.g G=HGMapKW
hgmapadd.k φKHLWH
hgmapadd.x φXB
hgmapadd.y φYB
Assertion hgmapadd φGX+˙Y=GX+˙GY

Proof

Step Hyp Ref Expression
1 hgmapadd.h H=LHypK
2 hgmapadd.u U=DVecHKW
3 hgmapadd.r R=ScalarU
4 hgmapadd.b B=BaseR
5 hgmapadd.p +˙=+R
6 hgmapadd.g G=HGMapKW
7 hgmapadd.k φKHLWH
8 hgmapadd.x φXB
9 hgmapadd.y φYB
10 eqid BaseU=BaseU
11 eqid 0U=0U
12 1 2 10 11 7 dvh1dim φtBaseUt0U
13 eqid LCDualKW=LCDualKW
14 1 13 7 lcdlmod φLCDualKWLMod
15 14 3ad2ant1 φtBaseUt0ULCDualKWLMod
16 eqid ScalarLCDualKW=ScalarLCDualKW
17 eqid BaseScalarLCDualKW=BaseScalarLCDualKW
18 7 3ad2ant1 φtBaseUt0UKHLWH
19 8 3ad2ant1 φtBaseUt0UXB
20 1 2 3 4 13 16 17 6 18 19 hgmapdcl φtBaseUt0UGXBaseScalarLCDualKW
21 1 2 3 4 13 16 17 6 7 9 hgmapdcl φGYBaseScalarLCDualKW
22 21 3ad2ant1 φtBaseUt0UGYBaseScalarLCDualKW
23 eqid BaseLCDualKW=BaseLCDualKW
24 eqid HDMapKW=HDMapKW
25 simp2 φtBaseUt0UtBaseU
26 1 2 10 13 23 24 18 25 hdmapcl φtBaseUt0UHDMapKWtBaseLCDualKW
27 eqid +LCDualKW=+LCDualKW
28 eqid LCDualKW=LCDualKW
29 eqid +ScalarLCDualKW=+ScalarLCDualKW
30 23 27 16 28 17 29 lmodvsdir LCDualKWLModGXBaseScalarLCDualKWGYBaseScalarLCDualKWHDMapKWtBaseLCDualKWGX+ScalarLCDualKWGYLCDualKWHDMapKWt=GXLCDualKWHDMapKWt+LCDualKWGYLCDualKWHDMapKWt
31 15 20 22 26 30 syl13anc φtBaseUt0UGX+ScalarLCDualKWGYLCDualKWHDMapKWt=GXLCDualKWHDMapKWt+LCDualKWGYLCDualKWHDMapKWt
32 1 2 7 dvhlmod φULMod
33 32 3ad2ant1 φtBaseUt0UULMod
34 9 3ad2ant1 φtBaseUt0UYB
35 eqid +U=+U
36 eqid U=U
37 10 35 3 36 4 5 lmodvsdir ULModXBYBtBaseUX+˙YUt=XUt+UYUt
38 33 19 34 25 37 syl13anc φtBaseUt0UX+˙YUt=XUt+UYUt
39 38 fveq2d φtBaseUt0UHDMapKWX+˙YUt=HDMapKWXUt+UYUt
40 10 3 36 4 lmodvscl ULModXBtBaseUXUtBaseU
41 33 19 25 40 syl3anc φtBaseUt0UXUtBaseU
42 10 3 36 4 lmodvscl ULModYBtBaseUYUtBaseU
43 33 34 25 42 syl3anc φtBaseUt0UYUtBaseU
44 1 2 10 35 13 27 24 18 41 43 hdmapadd φtBaseUt0UHDMapKWXUt+UYUt=HDMapKWXUt+LCDualKWHDMapKWYUt
45 1 2 10 36 3 4 13 28 24 6 18 25 19 hgmapvs φtBaseUt0UHDMapKWXUt=GXLCDualKWHDMapKWt
46 1 2 10 36 3 4 13 28 24 6 18 25 34 hgmapvs φtBaseUt0UHDMapKWYUt=GYLCDualKWHDMapKWt
47 45 46 oveq12d φtBaseUt0UHDMapKWXUt+LCDualKWHDMapKWYUt=GXLCDualKWHDMapKWt+LCDualKWGYLCDualKWHDMapKWt
48 39 44 47 3eqtrrd φtBaseUt0UGXLCDualKWHDMapKWt+LCDualKWGYLCDualKWHDMapKWt=HDMapKWX+˙YUt
49 3 4 5 lmodacl ULModXBYBX+˙YB
50 32 8 9 49 syl3anc φX+˙YB
51 50 3ad2ant1 φtBaseUt0UX+˙YB
52 1 2 10 36 3 4 13 28 24 6 18 25 51 hgmapvs φtBaseUt0UHDMapKWX+˙YUt=GX+˙YLCDualKWHDMapKWt
53 31 48 52 3eqtrrd φtBaseUt0UGX+˙YLCDualKWHDMapKWt=GX+ScalarLCDualKWGYLCDualKWHDMapKWt
54 eqid 0LCDualKW=0LCDualKW
55 1 13 7 lcdlvec φLCDualKWLVec
56 55 3ad2ant1 φtBaseUt0ULCDualKWLVec
57 1 2 3 4 13 16 17 6 7 50 hgmapdcl φGX+˙YBaseScalarLCDualKW
58 57 3ad2ant1 φtBaseUt0UGX+˙YBaseScalarLCDualKW
59 1 2 3 4 13 16 17 6 7 8 hgmapdcl φGXBaseScalarLCDualKW
60 16 17 29 lmodacl LCDualKWLModGXBaseScalarLCDualKWGYBaseScalarLCDualKWGX+ScalarLCDualKWGYBaseScalarLCDualKW
61 14 59 21 60 syl3anc φGX+ScalarLCDualKWGYBaseScalarLCDualKW
62 61 3ad2ant1 φtBaseUt0UGX+ScalarLCDualKWGYBaseScalarLCDualKW
63 simp3 φtBaseUt0Ut0U
64 1 2 10 11 13 54 24 18 25 hdmapeq0 φtBaseUt0UHDMapKWt=0LCDualKWt=0U
65 64 necon3bid φtBaseUt0UHDMapKWt0LCDualKWt0U
66 63 65 mpbird φtBaseUt0UHDMapKWt0LCDualKW
67 23 28 16 17 54 56 58 62 26 66 lvecvscan2 φtBaseUt0UGX+˙YLCDualKWHDMapKWt=GX+ScalarLCDualKWGYLCDualKWHDMapKWtGX+˙Y=GX+ScalarLCDualKWGY
68 53 67 mpbid φtBaseUt0UGX+˙Y=GX+ScalarLCDualKWGY
69 68 rexlimdv3a φtBaseUt0UGX+˙Y=GX+ScalarLCDualKWGY
70 12 69 mpd φGX+˙Y=GX+ScalarLCDualKWGY
71 1 2 3 5 13 16 29 7 lcdsadd φ+ScalarLCDualKW=+˙
72 71 oveqd φGX+ScalarLCDualKWGY=GX+˙GY
73 70 72 eqtrd φGX+˙Y=GX+˙GY