Metamath Proof Explorer


Theorem hgmapval0

Description: Value of the scalar sigma map at zero. (Contributed by NM, 12-Jun-2015)

Ref Expression
Hypotheses hgmapval0.h H=LHypK
hgmapval0.u U=DVecHKW
hgmapval0.r R=ScalarU
hgmapval0.o 0˙=0R
hgmapval0.g G=HGMapKW
hgmapval0.k φKHLWH
Assertion hgmapval0 φG0˙=0˙

Proof

Step Hyp Ref Expression
1 hgmapval0.h H=LHypK
2 hgmapval0.u U=DVecHKW
3 hgmapval0.r R=ScalarU
4 hgmapval0.o 0˙=0R
5 hgmapval0.g G=HGMapKW
6 hgmapval0.k φKHLWH
7 eqid BaseU=BaseU
8 eqid 0U=0U
9 1 2 7 8 6 dvh1dim φxBaseUx0U
10 eqid LCDualKW=LCDualKW
11 eqid 0LCDualKW=0LCDualKW
12 eqid HDMapKW=HDMapKW
13 6 adantr φxBaseUKHLWH
14 simpr φxBaseUxBaseU
15 1 2 7 8 10 11 12 13 14 hdmapeq0 φxBaseUHDMapKWx=0LCDualKWx=0U
16 15 biimpd φxBaseUHDMapKWx=0LCDualKWx=0U
17 16 necon3ad φxBaseUx0U¬HDMapKWx=0LCDualKW
18 17 3impia φxBaseUx0U¬HDMapKWx=0LCDualKW
19 1 2 6 dvhlmod φULMod
20 eqid U=U
21 7 3 20 4 8 lmod0vs ULModxBaseU0˙Ux=0U
22 19 21 sylan φxBaseU0˙Ux=0U
23 22 fveq2d φxBaseUHDMapKW0˙Ux=HDMapKW0U
24 eqid BaseR=BaseR
25 eqid LCDualKW=LCDualKW
26 3 24 4 lmod0cl ULMod0˙BaseR
27 19 26 syl φ0˙BaseR
28 27 adantr φxBaseU0˙BaseR
29 1 2 7 20 3 24 10 25 12 5 13 14 28 hgmapvs φxBaseUHDMapKW0˙Ux=G0˙LCDualKWHDMapKWx
30 1 2 8 10 11 12 6 hdmapval0 φHDMapKW0U=0LCDualKW
31 30 adantr φxBaseUHDMapKW0U=0LCDualKW
32 23 29 31 3eqtr3d φxBaseUG0˙LCDualKWHDMapKWx=0LCDualKW
33 eqid BaseLCDualKW=BaseLCDualKW
34 eqid ScalarLCDualKW=ScalarLCDualKW
35 eqid BaseScalarLCDualKW=BaseScalarLCDualKW
36 eqid 0ScalarLCDualKW=0ScalarLCDualKW
37 1 10 6 lcdlvec φLCDualKWLVec
38 37 adantr φxBaseULCDualKWLVec
39 1 2 13 dvhlmod φxBaseUULMod
40 39 26 syl φxBaseU0˙BaseR
41 1 2 3 24 10 34 35 5 13 40 hgmapdcl φxBaseUG0˙BaseScalarLCDualKW
42 1 2 7 10 33 12 13 14 hdmapcl φxBaseUHDMapKWxBaseLCDualKW
43 33 25 34 35 36 11 38 41 42 lvecvs0or φxBaseUG0˙LCDualKWHDMapKWx=0LCDualKWG0˙=0ScalarLCDualKWHDMapKWx=0LCDualKW
44 32 43 mpbid φxBaseUG0˙=0ScalarLCDualKWHDMapKWx=0LCDualKW
45 44 orcomd φxBaseUHDMapKWx=0LCDualKWG0˙=0ScalarLCDualKW
46 45 ord φxBaseU¬HDMapKWx=0LCDualKWG0˙=0ScalarLCDualKW
47 46 3adant3 φxBaseUx0U¬HDMapKWx=0LCDualKWG0˙=0ScalarLCDualKW
48 18 47 mpd φxBaseUx0UG0˙=0ScalarLCDualKW
49 48 rexlimdv3a φxBaseUx0UG0˙=0ScalarLCDualKW
50 9 49 mpd φG0˙=0ScalarLCDualKW
51 1 2 3 4 10 34 36 6 lcd0 φ0ScalarLCDualKW=0˙
52 50 51 eqtrd φG0˙=0˙