Metamath Proof Explorer


Theorem hhsscms

Description: The induced metric of a closed subspace is complete. (Contributed by NM, 10-Apr-2008) (Revised by Mario Carneiro, 14-May-2014) (New usage is discouraged.)

Ref Expression
Hypotheses hhssims2.1 W=+H×H×HnormH
hhssims2.3 D=IndMetW
hhsscms.3 HC
Assertion hhsscms DCMetH

Proof

Step Hyp Ref Expression
1 hhssims2.1 W=+H×H×HnormH
2 hhssims2.3 D=IndMetW
3 hhsscms.3 HC
4 eqid MetOpenD=MetOpenD
5 3 chshii HS
6 1 2 5 hhssmet DMetH
7 simpl fCauDf:HfCauD
8 1 2 5 hhssims2 D=norm-H×H
9 8 fveq2i CauD=Caunorm-H×H
10 7 9 eleqtrdi fCauDf:HfCaunorm-H×H
11 eqid norm-=norm-
12 11 hilxmet norm-∞Met
13 simpr fCauDf:Hf:H
14 causs norm-∞Metf:HfCaunorm-fCaunorm-H×H
15 12 13 14 sylancr fCauDf:HfCaunorm-fCaunorm-H×H
16 10 15 mpbird fCauDf:HfCaunorm-
17 3 chssii H
18 fss f:HHf:
19 13 17 18 sylancl fCauDf:Hf:
20 ax-hilex V
21 nnex V
22 20 21 elmap ff:
23 19 22 sylibr fCauDf:Hf
24 eqid +norm=+norm
25 24 11 hhims norm-=IndMet+norm
26 24 25 hhcau Cauchy=Caunorm-
27 26 elin2 fCauchyfCaunorm-f
28 16 23 27 sylanbrc fCauDf:HfCauchy
29 ax-hcompl fCauchyxfvx
30 vex fV
31 vex xV
32 30 31 breldm fvxfdomv
33 32 rexlimivw xfvxfdomv
34 28 29 33 3syl fCauDf:Hfdomv
35 hlimf v:domv
36 ffun v:domvFunv
37 funfvbrb Funvfdomvfvvf
38 35 36 37 mp2b fdomvfvvf
39 34 38 sylib fCauDf:Hfvvf
40 eqid MetOpennorm-=MetOpennorm-
41 24 25 40 hhlm v=tMetOpennorm-
42 resss tMetOpennorm-tMetOpennorm-
43 41 42 eqsstri vtMetOpennorm-
44 43 ssbri fvvfftMetOpennorm-vf
45 39 44 syl fCauDf:HftMetOpennorm-vf
46 8 40 4 metrest norm-∞MetHMetOpennorm-𝑡H=MetOpenD
47 12 17 46 mp2an MetOpennorm-𝑡H=MetOpenD
48 47 eqcomi MetOpenD=MetOpennorm-𝑡H
49 nnuz =1
50 3 a1i fCauDf:HHC
51 40 mopntop norm-∞MetMetOpennorm-Top
52 12 51 mp1i fCauDf:HMetOpennorm-Top
53 fvex vfV
54 53 chlimi HCf:HfvvfvfH
55 50 13 39 54 syl3anc fCauDf:HvfH
56 1zzd fCauDf:H1
57 48 49 50 52 55 56 13 lmss fCauDf:HftMetOpennorm-vfftMetOpenDvf
58 45 57 mpbid fCauDf:HftMetOpenDvf
59 30 53 breldm ftMetOpenDvffdomtMetOpenD
60 58 59 syl fCauDf:HfdomtMetOpenD
61 4 6 60 iscmet3i DCMetH