Metamath Proof Explorer


Theorem hlhilhillem

Description: Lemma for hlhil . (Contributed by NM, 23-Jun-2015)

Ref Expression
Hypotheses hlhilphl.h H=LHypK
hlhilphllem.u U=HLHilKW
hlhilphl.k φKHLWH
hlhilphllem.f F=ScalarU
hlhilphllem.l L=DVecHKW
hlhilphllem.v V=BaseL
hlhilphllem.a +˙=+L
hlhilphllem.s ·˙=L
hlhilphllem.r R=ScalarL
hlhilphllem.b B=BaseR
hlhilphllem.p ˙=+R
hlhilphllem.t ×˙=R
hlhilphllem.q Q=0R
hlhilphllem.z 0˙=0L
hlhilphllem.i ,˙=𝑖U
hlhilphllem.j J=HDMapKW
hlhilphllem.g G=HGMapKW
hlhilphllem.e E=xV,yVJyx
hlhilphllem.o O=ocvU
hlhilphllem.c C=ClSubSpU
Assertion hlhilhillem φUHil

Proof

Step Hyp Ref Expression
1 hlhilphl.h H=LHypK
2 hlhilphllem.u U=HLHilKW
3 hlhilphl.k φKHLWH
4 hlhilphllem.f F=ScalarU
5 hlhilphllem.l L=DVecHKW
6 hlhilphllem.v V=BaseL
7 hlhilphllem.a +˙=+L
8 hlhilphllem.s ·˙=L
9 hlhilphllem.r R=ScalarL
10 hlhilphllem.b B=BaseR
11 hlhilphllem.p ˙=+R
12 hlhilphllem.t ×˙=R
13 hlhilphllem.q Q=0R
14 hlhilphllem.z 0˙=0L
15 hlhilphllem.i ,˙=𝑖U
16 hlhilphllem.j J=HDMapKW
17 hlhilphllem.g G=HGMapKW
18 hlhilphllem.e E=xV,yVJyx
19 hlhilphllem.o O=ocvU
20 hlhilphllem.c C=ClSubSpU
21 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 hlhilphllem φUPreHil
22 3 adantr φxCKHLWH
23 eqid ocHKW=ocHKW
24 eqid DIsoHKW=DIsoHKW
25 1 24 2 20 3 hlhillcs φC=ranDIsoHKW
26 25 eleq2d φxCxranDIsoHKW
27 26 biimpa φxCxranDIsoHKW
28 1 5 24 6 dihrnss KHLWHxranDIsoHKWxV
29 3 28 sylan φxranDIsoHKWxV
30 27 29 syldan φxCxV
31 1 5 2 22 6 23 19 30 hlhilocv φxCOx=ocHKWx
32 31 oveq2d φxCxLSSumLOx=xLSSumLocHKWx
33 eqid LSSumL=LSSumL
34 1 5 2 3 33 hlhillsm φLSSumL=LSSumU
35 34 adantr φxCLSSumL=LSSumU
36 35 oveqd φxCxLSSumLOx=xLSSumUOx
37 eqid LSubSpL=LSubSpL
38 3 adantr φxranDIsoHKWKHLWH
39 1 5 24 37 dihrnlss KHLWHxranDIsoHKWxLSubSpL
40 3 39 sylan φxranDIsoHKWxLSubSpL
41 1 24 5 6 23 38 29 dochoccl φxranDIsoHKWxranDIsoHKWocHKWocHKWx=x
42 41 biimpd φxranDIsoHKWxranDIsoHKWocHKWocHKWx=x
43 42 ex φxranDIsoHKWxranDIsoHKWocHKWocHKWx=x
44 43 pm2.43d φxranDIsoHKWocHKWocHKWx=x
45 44 imp φxranDIsoHKWocHKWocHKWx=x
46 1 23 5 6 37 33 38 40 45 dochexmid φxranDIsoHKWxLSSumLocHKWx=V
47 27 46 syldan φxCxLSSumLocHKWx=V
48 32 36 47 3eqtr3d φxCxLSSumUOx=V
49 1 2 3 5 6 hlhilbase φV=BaseU
50 49 adantr φxCV=BaseU
51 48 50 eqtrd φxCxLSSumUOx=BaseU
52 51 ralrimiva φxCxLSSumUOx=BaseU
53 eqid BaseU=BaseU
54 eqid LSSumU=LSSumU
55 53 54 19 20 ishil2 UHilUPreHilxCxLSSumUOx=BaseU
56 21 52 55 sylanbrc φUHil