Description: Lemma for hlhil . (Contributed by NM, 23-Jun-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | hlhilphl.h | |
|
hlhilphllem.u | |
||
hlhilphl.k | |
||
hlhilphllem.f | |
||
hlhilphllem.l | |
||
hlhilphllem.v | |
||
hlhilphllem.a | |
||
hlhilphllem.s | |
||
hlhilphllem.r | |
||
hlhilphllem.b | |
||
hlhilphllem.p | |
||
hlhilphllem.t | |
||
hlhilphllem.q | |
||
hlhilphllem.z | |
||
hlhilphllem.i | |
||
hlhilphllem.j | |
||
hlhilphllem.g | |
||
hlhilphllem.e | |
||
hlhilphllem.o | |
||
hlhilphllem.c | |
||
Assertion | hlhilhillem | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hlhilphl.h | |
|
2 | hlhilphllem.u | |
|
3 | hlhilphl.k | |
|
4 | hlhilphllem.f | |
|
5 | hlhilphllem.l | |
|
6 | hlhilphllem.v | |
|
7 | hlhilphllem.a | |
|
8 | hlhilphllem.s | |
|
9 | hlhilphllem.r | |
|
10 | hlhilphllem.b | |
|
11 | hlhilphllem.p | |
|
12 | hlhilphllem.t | |
|
13 | hlhilphllem.q | |
|
14 | hlhilphllem.z | |
|
15 | hlhilphllem.i | |
|
16 | hlhilphllem.j | |
|
17 | hlhilphllem.g | |
|
18 | hlhilphllem.e | |
|
19 | hlhilphllem.o | |
|
20 | hlhilphllem.c | |
|
21 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | hlhilphllem | |
22 | 3 | adantr | |
23 | eqid | |
|
24 | eqid | |
|
25 | 1 24 2 20 3 | hlhillcs | |
26 | 25 | eleq2d | |
27 | 26 | biimpa | |
28 | 1 5 24 6 | dihrnss | |
29 | 3 28 | sylan | |
30 | 27 29 | syldan | |
31 | 1 5 2 22 6 23 19 30 | hlhilocv | |
32 | 31 | oveq2d | |
33 | eqid | |
|
34 | 1 5 2 3 33 | hlhillsm | |
35 | 34 | adantr | |
36 | 35 | oveqd | |
37 | eqid | |
|
38 | 3 | adantr | |
39 | 1 5 24 37 | dihrnlss | |
40 | 3 39 | sylan | |
41 | 1 24 5 6 23 38 29 | dochoccl | |
42 | 41 | biimpd | |
43 | 42 | ex | |
44 | 43 | pm2.43d | |
45 | 44 | imp | |
46 | 1 23 5 6 37 33 38 40 45 | dochexmid | |
47 | 27 46 | syldan | |
48 | 32 36 47 | 3eqtr3d | |
49 | 1 2 3 5 6 | hlhilbase | |
50 | 49 | adantr | |
51 | 48 50 | eqtrd | |
52 | 51 | ralrimiva | |
53 | eqid | |
|
54 | eqid | |
|
55 | 53 54 19 20 | ishil2 | |
56 | 21 52 55 | sylanbrc | |