Metamath Proof Explorer


Theorem hlhilhillem

Description: Lemma for hlhil . (Contributed by NM, 23-Jun-2015)

Ref Expression
Hypotheses hlhilphl.h H = LHyp K
hlhilphllem.u U = HLHil K W
hlhilphl.k φ K HL W H
hlhilphllem.f F = Scalar U
hlhilphllem.l L = DVecH K W
hlhilphllem.v V = Base L
hlhilphllem.a + ˙ = + L
hlhilphllem.s · ˙ = L
hlhilphllem.r R = Scalar L
hlhilphllem.b B = Base R
hlhilphllem.p ˙ = + R
hlhilphllem.t × ˙ = R
hlhilphllem.q Q = 0 R
hlhilphllem.z 0 ˙ = 0 L
hlhilphllem.i , ˙ = 𝑖 U
hlhilphllem.j J = HDMap K W
hlhilphllem.g G = HGMap K W
hlhilphllem.e E = x V , y V J y x
hlhilphllem.o O = ocv U
hlhilphllem.c C = ClSubSp U
Assertion hlhilhillem φ U Hil

Proof

Step Hyp Ref Expression
1 hlhilphl.h H = LHyp K
2 hlhilphllem.u U = HLHil K W
3 hlhilphl.k φ K HL W H
4 hlhilphllem.f F = Scalar U
5 hlhilphllem.l L = DVecH K W
6 hlhilphllem.v V = Base L
7 hlhilphllem.a + ˙ = + L
8 hlhilphllem.s · ˙ = L
9 hlhilphllem.r R = Scalar L
10 hlhilphllem.b B = Base R
11 hlhilphllem.p ˙ = + R
12 hlhilphllem.t × ˙ = R
13 hlhilphllem.q Q = 0 R
14 hlhilphllem.z 0 ˙ = 0 L
15 hlhilphllem.i , ˙ = 𝑖 U
16 hlhilphllem.j J = HDMap K W
17 hlhilphllem.g G = HGMap K W
18 hlhilphllem.e E = x V , y V J y x
19 hlhilphllem.o O = ocv U
20 hlhilphllem.c C = ClSubSp U
21 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 hlhilphllem φ U PreHil
22 3 adantr φ x C K HL W H
23 eqid ocH K W = ocH K W
24 eqid DIsoH K W = DIsoH K W
25 1 24 2 20 3 hlhillcs φ C = ran DIsoH K W
26 25 eleq2d φ x C x ran DIsoH K W
27 26 biimpa φ x C x ran DIsoH K W
28 1 5 24 6 dihrnss K HL W H x ran DIsoH K W x V
29 3 28 sylan φ x ran DIsoH K W x V
30 27 29 syldan φ x C x V
31 1 5 2 22 6 23 19 30 hlhilocv φ x C O x = ocH K W x
32 31 oveq2d φ x C x LSSum L O x = x LSSum L ocH K W x
33 eqid LSSum L = LSSum L
34 1 5 2 3 33 hlhillsm φ LSSum L = LSSum U
35 34 adantr φ x C LSSum L = LSSum U
36 35 oveqd φ x C x LSSum L O x = x LSSum U O x
37 eqid LSubSp L = LSubSp L
38 3 adantr φ x ran DIsoH K W K HL W H
39 1 5 24 37 dihrnlss K HL W H x ran DIsoH K W x LSubSp L
40 3 39 sylan φ x ran DIsoH K W x LSubSp L
41 1 24 5 6 23 38 29 dochoccl φ x ran DIsoH K W x ran DIsoH K W ocH K W ocH K W x = x
42 41 biimpd φ x ran DIsoH K W x ran DIsoH K W ocH K W ocH K W x = x
43 42 ex φ x ran DIsoH K W x ran DIsoH K W ocH K W ocH K W x = x
44 43 pm2.43d φ x ran DIsoH K W ocH K W ocH K W x = x
45 44 imp φ x ran DIsoH K W ocH K W ocH K W x = x
46 1 23 5 6 37 33 38 40 45 dochexmid φ x ran DIsoH K W x LSSum L ocH K W x = V
47 27 46 syldan φ x C x LSSum L ocH K W x = V
48 32 36 47 3eqtr3d φ x C x LSSum U O x = V
49 1 2 3 5 6 hlhilbase φ V = Base U
50 49 adantr φ x C V = Base U
51 48 50 eqtrd φ x C x LSSum U O x = Base U
52 51 ralrimiva φ x C x LSSum U O x = Base U
53 eqid Base U = Base U
54 eqid LSSum U = LSSum U
55 53 54 19 20 ishil2 U Hil U PreHil x C x LSSum U O x = Base U
56 21 52 55 sylanbrc φ U Hil