Step |
Hyp |
Ref |
Expression |
1 |
|
hlhilphl.h |
|
2 |
|
hlhilphllem.u |
|
3 |
|
hlhilphl.k |
|
4 |
|
hlhilphllem.f |
|
5 |
|
hlhilphllem.l |
|
6 |
|
hlhilphllem.v |
|
7 |
|
hlhilphllem.a |
|
8 |
|
hlhilphllem.s |
|
9 |
|
hlhilphllem.r |
|
10 |
|
hlhilphllem.b |
|
11 |
|
hlhilphllem.p |
|
12 |
|
hlhilphllem.t |
|
13 |
|
hlhilphllem.q |
|
14 |
|
hlhilphllem.z |
|
15 |
|
hlhilphllem.i |
|
16 |
|
hlhilphllem.j |
|
17 |
|
hlhilphllem.g |
|
18 |
|
hlhilphllem.e |
|
19 |
|
hlhilphllem.o |
|
20 |
|
hlhilphllem.c |
|
21 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
|
hlhilphllem |
|
22 |
3
|
adantr |
|
23 |
|
eqid |
|
24 |
|
eqid |
|
25 |
1 24 2 20 3
|
hlhillcs |
|
26 |
25
|
eleq2d |
|
27 |
26
|
biimpa |
|
28 |
1 5 24 6
|
dihrnss |
|
29 |
3 28
|
sylan |
|
30 |
27 29
|
syldan |
|
31 |
1 5 2 22 6 23 19 30
|
hlhilocv |
|
32 |
31
|
oveq2d |
|
33 |
|
eqid |
|
34 |
1 5 2 3 33
|
hlhillsm |
|
35 |
34
|
adantr |
|
36 |
35
|
oveqd |
|
37 |
|
eqid |
|
38 |
3
|
adantr |
|
39 |
1 5 24 37
|
dihrnlss |
|
40 |
3 39
|
sylan |
|
41 |
1 24 5 6 23 38 29
|
dochoccl |
|
42 |
41
|
biimpd |
|
43 |
42
|
ex |
|
44 |
43
|
pm2.43d |
|
45 |
44
|
imp |
|
46 |
1 23 5 6 37 33 38 40 45
|
dochexmid |
|
47 |
27 46
|
syldan |
|
48 |
32 36 47
|
3eqtr3d |
|
49 |
1 2 3 5 6
|
hlhilbase |
|
50 |
49
|
adantr |
|
51 |
48 50
|
eqtrd |
|
52 |
51
|
ralrimiva |
|
53 |
|
eqid |
|
54 |
|
eqid |
|
55 |
53 54 19 20
|
ishil2 |
|
56 |
21 52 55
|
sylanbrc |
|