Step |
Hyp |
Ref |
Expression |
1 |
|
hlhilphl.h |
|
2 |
|
hlhilphllem.u |
|
3 |
|
hlhilphl.k |
|
4 |
|
hlhilphllem.f |
|
5 |
|
hlhilphllem.l |
|
6 |
|
hlhilphllem.v |
|
7 |
|
hlhilphllem.a |
|
8 |
|
hlhilphllem.s |
|
9 |
|
hlhilphllem.r |
|
10 |
|
hlhilphllem.b |
|
11 |
|
hlhilphllem.p |
|
12 |
|
hlhilphllem.t |
|
13 |
|
hlhilphllem.q |
|
14 |
|
hlhilphllem.z |
|
15 |
|
hlhilphllem.i |
|
16 |
|
hlhilphllem.j |
|
17 |
|
hlhilphllem.g |
|
18 |
|
hlhilphllem.e |
|
19 |
1 2 3 5 6
|
hlhilbase |
|
20 |
1 2 3 5 7
|
hlhilplus |
|
21 |
1 5 8 2 3
|
hlhilvsca |
|
22 |
15
|
a1i |
|
23 |
1 5 2 3 14
|
hlhil0 |
|
24 |
4
|
a1i |
|
25 |
1 5 9 2 4 3 10
|
hlhilsbase2 |
|
26 |
1 5 9 2 4 3 11
|
hlhilsplus2 |
|
27 |
1 5 9 2 4 3 12
|
hlhilsmul2 |
|
28 |
1 2 4 17 3
|
hlhilnvl |
|
29 |
1 5 9 2 4 3 13
|
hlhils0 |
|
30 |
1 2 3
|
hlhillvec |
|
31 |
1 2 3 4
|
hlhilsrng |
|
32 |
3
|
3ad2ant1 |
|
33 |
|
simp2 |
|
34 |
|
simp3 |
|
35 |
1 5 6 16 2 32 15 33 34
|
hlhilipval |
|
36 |
1 5 6 9 10 16 32 33 34
|
hdmapipcl |
|
37 |
35 36
|
eqeltrd |
|
38 |
3
|
3ad2ant1 |
|
39 |
|
simp31 |
|
40 |
|
simp32 |
|
41 |
|
simp33 |
|
42 |
|
simp2 |
|
43 |
1 5 6 7 8 9 10 11 12 16 38 39 40 41 42
|
hdmapln1 |
|
44 |
1 5 3
|
dvhlmod |
|
45 |
44
|
3ad2ant1 |
|
46 |
6 9 8 10
|
lmodvscl |
|
47 |
45 42 39 46
|
syl3anc |
|
48 |
6 7
|
lmodvacl |
|
49 |
45 47 40 48
|
syl3anc |
|
50 |
1 5 6 16 2 38 15 49 41
|
hlhilipval |
|
51 |
1 5 6 16 2 38 15 39 41
|
hlhilipval |
|
52 |
51
|
oveq2d |
|
53 |
1 5 6 16 2 38 15 40 41
|
hlhilipval |
|
54 |
52 53
|
oveq12d |
|
55 |
43 50 54
|
3eqtr4d |
|
56 |
3
|
adantr |
|
57 |
|
simpr |
|
58 |
1 5 6 16 2 56 15 57 57
|
hlhilipval |
|
59 |
58
|
eqeq1d |
|
60 |
1 5 6 14 9 13 16 56 57
|
hdmapip0 |
|
61 |
59 60
|
bitrd |
|
62 |
61
|
biimp3a |
|
63 |
1 5 6 16 17 32 33 34
|
hdmapg |
|
64 |
35
|
fveq2d |
|
65 |
1 5 6 16 2 32 15 34 33
|
hlhilipval |
|
66 |
63 64 65
|
3eqtr4d |
|
67 |
19 20 21 22 23 24 25 26 27 28 29 30 31 37 55 62 66
|
isphld |
|