| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hlhilphl.h |  | 
						
							| 2 |  | hlhilphllem.u |  | 
						
							| 3 |  | hlhilphl.k |  | 
						
							| 4 |  | hlhilphllem.f |  | 
						
							| 5 |  | hlhilphllem.l |  | 
						
							| 6 |  | hlhilphllem.v |  | 
						
							| 7 |  | hlhilphllem.a |  | 
						
							| 8 |  | hlhilphllem.s |  | 
						
							| 9 |  | hlhilphllem.r |  | 
						
							| 10 |  | hlhilphllem.b |  | 
						
							| 11 |  | hlhilphllem.p |  | 
						
							| 12 |  | hlhilphllem.t |  | 
						
							| 13 |  | hlhilphllem.q |  | 
						
							| 14 |  | hlhilphllem.z |  | 
						
							| 15 |  | hlhilphllem.i |  | 
						
							| 16 |  | hlhilphllem.j |  | 
						
							| 17 |  | hlhilphllem.g |  | 
						
							| 18 |  | hlhilphllem.e |  | 
						
							| 19 | 1 2 3 5 6 | hlhilbase |  | 
						
							| 20 | 1 2 3 5 7 | hlhilplus |  | 
						
							| 21 | 1 5 8 2 3 | hlhilvsca |  | 
						
							| 22 | 15 | a1i |  | 
						
							| 23 | 1 5 2 3 14 | hlhil0 |  | 
						
							| 24 | 4 | a1i |  | 
						
							| 25 | 1 5 9 2 4 3 10 | hlhilsbase2 |  | 
						
							| 26 | 1 5 9 2 4 3 11 | hlhilsplus2 |  | 
						
							| 27 | 1 5 9 2 4 3 12 | hlhilsmul2 |  | 
						
							| 28 | 1 2 4 17 3 | hlhilnvl |  | 
						
							| 29 | 1 5 9 2 4 3 13 | hlhils0 |  | 
						
							| 30 | 1 2 3 | hlhillvec |  | 
						
							| 31 | 1 2 3 4 | hlhilsrng |  | 
						
							| 32 | 3 | 3ad2ant1 |  | 
						
							| 33 |  | simp2 |  | 
						
							| 34 |  | simp3 |  | 
						
							| 35 | 1 5 6 16 2 32 15 33 34 | hlhilipval |  | 
						
							| 36 | 1 5 6 9 10 16 32 33 34 | hdmapipcl |  | 
						
							| 37 | 35 36 | eqeltrd |  | 
						
							| 38 | 3 | 3ad2ant1 |  | 
						
							| 39 |  | simp31 |  | 
						
							| 40 |  | simp32 |  | 
						
							| 41 |  | simp33 |  | 
						
							| 42 |  | simp2 |  | 
						
							| 43 | 1 5 6 7 8 9 10 11 12 16 38 39 40 41 42 | hdmapln1 |  | 
						
							| 44 | 1 5 3 | dvhlmod |  | 
						
							| 45 | 44 | 3ad2ant1 |  | 
						
							| 46 | 6 9 8 10 | lmodvscl |  | 
						
							| 47 | 45 42 39 46 | syl3anc |  | 
						
							| 48 | 6 7 | lmodvacl |  | 
						
							| 49 | 45 47 40 48 | syl3anc |  | 
						
							| 50 | 1 5 6 16 2 38 15 49 41 | hlhilipval |  | 
						
							| 51 | 1 5 6 16 2 38 15 39 41 | hlhilipval |  | 
						
							| 52 | 51 | oveq2d |  | 
						
							| 53 | 1 5 6 16 2 38 15 40 41 | hlhilipval |  | 
						
							| 54 | 52 53 | oveq12d |  | 
						
							| 55 | 43 50 54 | 3eqtr4d |  | 
						
							| 56 | 3 | adantr |  | 
						
							| 57 |  | simpr |  | 
						
							| 58 | 1 5 6 16 2 56 15 57 57 | hlhilipval |  | 
						
							| 59 | 58 | eqeq1d |  | 
						
							| 60 | 1 5 6 14 9 13 16 56 57 | hdmapip0 |  | 
						
							| 61 | 59 60 | bitrd |  | 
						
							| 62 | 61 | biimp3a |  | 
						
							| 63 | 1 5 6 16 17 32 33 34 | hdmapg |  | 
						
							| 64 | 35 | fveq2d |  | 
						
							| 65 | 1 5 6 16 2 32 15 34 33 | hlhilipval |  | 
						
							| 66 | 63 64 65 | 3eqtr4d |  | 
						
							| 67 | 19 20 21 22 23 24 25 26 27 28 29 30 31 37 55 62 66 | isphld |  |