Metamath Proof Explorer


Theorem hlhilphllem

Description: Lemma for hlhil . (Contributed by NM, 23-Jun-2015)

Ref Expression
Hypotheses hlhilphl.h H = LHyp K
hlhilphllem.u U = HLHil K W
hlhilphl.k φ K HL W H
hlhilphllem.f F = Scalar U
hlhilphllem.l L = DVecH K W
hlhilphllem.v V = Base L
hlhilphllem.a + ˙ = + L
hlhilphllem.s · ˙ = L
hlhilphllem.r R = Scalar L
hlhilphllem.b B = Base R
hlhilphllem.p ˙ = + R
hlhilphllem.t × ˙ = R
hlhilphllem.q Q = 0 R
hlhilphllem.z 0 ˙ = 0 L
hlhilphllem.i , ˙ = 𝑖 U
hlhilphllem.j J = HDMap K W
hlhilphllem.g G = HGMap K W
hlhilphllem.e E = x V , y V J y x
Assertion hlhilphllem φ U PreHil

Proof

Step Hyp Ref Expression
1 hlhilphl.h H = LHyp K
2 hlhilphllem.u U = HLHil K W
3 hlhilphl.k φ K HL W H
4 hlhilphllem.f F = Scalar U
5 hlhilphllem.l L = DVecH K W
6 hlhilphllem.v V = Base L
7 hlhilphllem.a + ˙ = + L
8 hlhilphllem.s · ˙ = L
9 hlhilphllem.r R = Scalar L
10 hlhilphllem.b B = Base R
11 hlhilphllem.p ˙ = + R
12 hlhilphllem.t × ˙ = R
13 hlhilphllem.q Q = 0 R
14 hlhilphllem.z 0 ˙ = 0 L
15 hlhilphllem.i , ˙ = 𝑖 U
16 hlhilphllem.j J = HDMap K W
17 hlhilphllem.g G = HGMap K W
18 hlhilphllem.e E = x V , y V J y x
19 1 2 3 5 6 hlhilbase φ V = Base U
20 1 2 3 5 7 hlhilplus φ + ˙ = + U
21 1 5 8 2 3 hlhilvsca φ · ˙ = U
22 15 a1i φ , ˙ = 𝑖 U
23 1 5 2 3 14 hlhil0 φ 0 ˙ = 0 U
24 4 a1i φ F = Scalar U
25 1 5 9 2 4 3 10 hlhilsbase2 φ B = Base F
26 1 5 9 2 4 3 11 hlhilsplus2 φ ˙ = + F
27 1 5 9 2 4 3 12 hlhilsmul2 φ × ˙ = F
28 1 2 4 17 3 hlhilnvl φ G = * F
29 1 5 9 2 4 3 13 hlhils0 φ Q = 0 F
30 1 2 3 hlhillvec φ U LVec
31 1 2 3 4 hlhilsrng φ F *-Ring
32 3 3ad2ant1 φ a V b V K HL W H
33 simp2 φ a V b V a V
34 simp3 φ a V b V b V
35 1 5 6 16 2 32 15 33 34 hlhilipval φ a V b V a , ˙ b = J b a
36 1 5 6 9 10 16 32 33 34 hdmapipcl φ a V b V J b a B
37 35 36 eqeltrd φ a V b V a , ˙ b B
38 3 3ad2ant1 φ d B a V b V c V K HL W H
39 simp31 φ d B a V b V c V a V
40 simp32 φ d B a V b V c V b V
41 simp33 φ d B a V b V c V c V
42 simp2 φ d B a V b V c V d B
43 1 5 6 7 8 9 10 11 12 16 38 39 40 41 42 hdmapln1 φ d B a V b V c V J c d · ˙ a + ˙ b = d × ˙ J c a ˙ J c b
44 1 5 3 dvhlmod φ L LMod
45 44 3ad2ant1 φ d B a V b V c V L LMod
46 6 9 8 10 lmodvscl L LMod d B a V d · ˙ a V
47 45 42 39 46 syl3anc φ d B a V b V c V d · ˙ a V
48 6 7 lmodvacl L LMod d · ˙ a V b V d · ˙ a + ˙ b V
49 45 47 40 48 syl3anc φ d B a V b V c V d · ˙ a + ˙ b V
50 1 5 6 16 2 38 15 49 41 hlhilipval φ d B a V b V c V d · ˙ a + ˙ b , ˙ c = J c d · ˙ a + ˙ b
51 1 5 6 16 2 38 15 39 41 hlhilipval φ d B a V b V c V a , ˙ c = J c a
52 51 oveq2d φ d B a V b V c V d × ˙ a , ˙ c = d × ˙ J c a
53 1 5 6 16 2 38 15 40 41 hlhilipval φ d B a V b V c V b , ˙ c = J c b
54 52 53 oveq12d φ d B a V b V c V d × ˙ a , ˙ c ˙ b , ˙ c = d × ˙ J c a ˙ J c b
55 43 50 54 3eqtr4d φ d B a V b V c V d · ˙ a + ˙ b , ˙ c = d × ˙ a , ˙ c ˙ b , ˙ c
56 3 adantr φ a V K HL W H
57 simpr φ a V a V
58 1 5 6 16 2 56 15 57 57 hlhilipval φ a V a , ˙ a = J a a
59 58 eqeq1d φ a V a , ˙ a = Q J a a = Q
60 1 5 6 14 9 13 16 56 57 hdmapip0 φ a V J a a = Q a = 0 ˙
61 59 60 bitrd φ a V a , ˙ a = Q a = 0 ˙
62 61 biimp3a φ a V a , ˙ a = Q a = 0 ˙
63 1 5 6 16 17 32 33 34 hdmapg φ a V b V G J b a = J a b
64 35 fveq2d φ a V b V G a , ˙ b = G J b a
65 1 5 6 16 2 32 15 34 33 hlhilipval φ a V b V b , ˙ a = J a b
66 63 64 65 3eqtr4d φ a V b V G a , ˙ b = b , ˙ a
67 19 20 21 22 23 24 25 26 27 28 29 30 31 37 55 62 66 isphld φ U PreHil