Description: Lemma for icccmp . (Contributed by Mario Carneiro, 13-Jun-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | icccmp.1 | |
|
icccmp.2 | |
||
icccmp.3 | |
||
icccmp.4 | |
||
icccmp.5 | |
||
icccmp.6 | |
||
icccmp.7 | |
||
icccmp.8 | |
||
icccmp.9 | |
||
Assertion | icccmplem3 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | icccmp.1 | |
|
2 | icccmp.2 | |
|
3 | icccmp.3 | |
|
4 | icccmp.4 | |
|
5 | icccmp.5 | |
|
6 | icccmp.6 | |
|
7 | icccmp.7 | |
|
8 | icccmp.8 | |
|
9 | icccmp.9 | |
|
10 | 4 | ssrab3 | |
11 | iccssre | |
|
12 | 5 6 11 | syl2anc | |
13 | 10 12 | sstrid | |
14 | 1 2 3 4 5 6 7 8 9 | icccmplem1 | |
15 | 14 | simpld | |
16 | 15 | ne0d | |
17 | 14 | simprd | |
18 | brralrspcev | |
|
19 | 6 17 18 | syl2anc | |
20 | 13 16 19 | suprcld | |
21 | 13 16 19 15 | suprubd | |
22 | suprleub | |
|
23 | 13 16 19 6 22 | syl31anc | |
24 | 17 23 | mpbird | |
25 | elicc2 | |
|
26 | 5 6 25 | syl2anc | |
27 | 20 21 24 26 | mpbir3and | |
28 | 9 27 | sseldd | |
29 | eluni2 | |
|
30 | 28 29 | sylib | |
31 | 8 | sselda | |
32 | 3 | rexmet | |
33 | eqid | |
|
34 | 3 33 | tgioo | |
35 | 1 34 | eqtri | |
36 | 35 | mopni2 | |
37 | 32 36 | mp3an1 | |
38 | 37 | ex | |
39 | 31 38 | syl | |
40 | 5 | ad2antrr | |
41 | 6 | ad2antrr | |
42 | 7 | ad2antrr | |
43 | 8 | ad2antrr | |
44 | 9 | ad2antrr | |
45 | simplr | |
|
46 | simprl | |
|
47 | simprr | |
|
48 | eqid | |
|
49 | eqid | |
|
50 | 1 2 3 4 40 41 42 43 44 45 46 47 48 49 | icccmplem2 | |
51 | 50 | rexlimdvaa | |
52 | 39 51 | syld | |
53 | 52 | rexlimdva | |
54 | 30 53 | mpd | |