Metamath Proof Explorer


Theorem icccmplem3

Description: Lemma for icccmp . (Contributed by Mario Carneiro, 13-Jun-2014)

Ref Expression
Hypotheses icccmp.1 J=topGenran.
icccmp.2 T=J𝑡AB
icccmp.3 D=abs2
icccmp.4 S=xAB|z𝒫UFinAxz
icccmp.5 φA
icccmp.6 φB
icccmp.7 φAB
icccmp.8 φUJ
icccmp.9 φABU
Assertion icccmplem3 φBS

Proof

Step Hyp Ref Expression
1 icccmp.1 J=topGenran.
2 icccmp.2 T=J𝑡AB
3 icccmp.3 D=abs2
4 icccmp.4 S=xAB|z𝒫UFinAxz
5 icccmp.5 φA
6 icccmp.6 φB
7 icccmp.7 φAB
8 icccmp.8 φUJ
9 icccmp.9 φABU
10 4 ssrab3 SAB
11 iccssre ABAB
12 5 6 11 syl2anc φAB
13 10 12 sstrid φS
14 1 2 3 4 5 6 7 8 9 icccmplem1 φASySyB
15 14 simpld φAS
16 15 ne0d φS
17 14 simprd φySyB
18 brralrspcev BySyBvySyv
19 6 17 18 syl2anc φvySyv
20 13 16 19 suprcld φsupS<
21 13 16 19 15 suprubd φAsupS<
22 suprleub SSvySyvBsupS<BySyB
23 13 16 19 6 22 syl31anc φsupS<BySyB
24 17 23 mpbird φsupS<B
25 elicc2 ABsupS<ABsupS<AsupS<supS<B
26 5 6 25 syl2anc φsupS<ABsupS<AsupS<supS<B
27 20 21 24 26 mpbir3and φsupS<AB
28 9 27 sseldd φsupS<U
29 eluni2 supS<UuUsupS<u
30 28 29 sylib φuUsupS<u
31 8 sselda φuUuJ
32 3 rexmet D∞Met
33 eqid MetOpenD=MetOpenD
34 3 33 tgioo topGenran.=MetOpenD
35 1 34 eqtri J=MetOpenD
36 35 mopni2 D∞MetuJsupS<uw+supS<ballDwu
37 32 36 mp3an1 uJsupS<uw+supS<ballDwu
38 37 ex uJsupS<uw+supS<ballDwu
39 31 38 syl φuUsupS<uw+supS<ballDwu
40 5 ad2antrr φuUw+supS<ballDwuA
41 6 ad2antrr φuUw+supS<ballDwuB
42 7 ad2antrr φuUw+supS<ballDwuAB
43 8 ad2antrr φuUw+supS<ballDwuUJ
44 9 ad2antrr φuUw+supS<ballDwuABU
45 simplr φuUw+supS<ballDwuuU
46 simprl φuUw+supS<ballDwuw+
47 simprr φuUw+supS<ballDwusupS<ballDwu
48 eqid supS<=supS<
49 eqid ifsupS<+w2BsupS<+w2B=ifsupS<+w2BsupS<+w2B
50 1 2 3 4 40 41 42 43 44 45 46 47 48 49 icccmplem2 φuUw+supS<ballDwuBS
51 50 rexlimdvaa φuUw+supS<ballDwuBS
52 39 51 syld φuUsupS<uBS
53 52 rexlimdva φuUsupS<uBS
54 30 53 mpd φBS