Metamath Proof Explorer


Theorem icccmplem3

Description: Lemma for icccmp . (Contributed by Mario Carneiro, 13-Jun-2014)

Ref Expression
Hypotheses icccmp.1 J = topGen ran .
icccmp.2 T = J 𝑡 A B
icccmp.3 D = abs 2
icccmp.4 S = x A B | z 𝒫 U Fin A x z
icccmp.5 φ A
icccmp.6 φ B
icccmp.7 φ A B
icccmp.8 φ U J
icccmp.9 φ A B U
Assertion icccmplem3 φ B S

Proof

Step Hyp Ref Expression
1 icccmp.1 J = topGen ran .
2 icccmp.2 T = J 𝑡 A B
3 icccmp.3 D = abs 2
4 icccmp.4 S = x A B | z 𝒫 U Fin A x z
5 icccmp.5 φ A
6 icccmp.6 φ B
7 icccmp.7 φ A B
8 icccmp.8 φ U J
9 icccmp.9 φ A B U
10 4 ssrab3 S A B
11 iccssre A B A B
12 5 6 11 syl2anc φ A B
13 10 12 sstrid φ S
14 1 2 3 4 5 6 7 8 9 icccmplem1 φ A S y S y B
15 14 simpld φ A S
16 15 ne0d φ S
17 14 simprd φ y S y B
18 brralrspcev B y S y B v y S y v
19 6 17 18 syl2anc φ v y S y v
20 13 16 19 suprcld φ sup S <
21 13 16 19 15 suprubd φ A sup S <
22 suprleub S S v y S y v B sup S < B y S y B
23 13 16 19 6 22 syl31anc φ sup S < B y S y B
24 17 23 mpbird φ sup S < B
25 elicc2 A B sup S < A B sup S < A sup S < sup S < B
26 5 6 25 syl2anc φ sup S < A B sup S < A sup S < sup S < B
27 20 21 24 26 mpbir3and φ sup S < A B
28 9 27 sseldd φ sup S < U
29 eluni2 sup S < U u U sup S < u
30 28 29 sylib φ u U sup S < u
31 8 sselda φ u U u J
32 3 rexmet D ∞Met
33 eqid MetOpen D = MetOpen D
34 3 33 tgioo topGen ran . = MetOpen D
35 1 34 eqtri J = MetOpen D
36 35 mopni2 D ∞Met u J sup S < u w + sup S < ball D w u
37 32 36 mp3an1 u J sup S < u w + sup S < ball D w u
38 37 ex u J sup S < u w + sup S < ball D w u
39 31 38 syl φ u U sup S < u w + sup S < ball D w u
40 5 ad2antrr φ u U w + sup S < ball D w u A
41 6 ad2antrr φ u U w + sup S < ball D w u B
42 7 ad2antrr φ u U w + sup S < ball D w u A B
43 8 ad2antrr φ u U w + sup S < ball D w u U J
44 9 ad2antrr φ u U w + sup S < ball D w u A B U
45 simplr φ u U w + sup S < ball D w u u U
46 simprl φ u U w + sup S < ball D w u w +
47 simprr φ u U w + sup S < ball D w u sup S < ball D w u
48 eqid sup S < = sup S <
49 eqid if sup S < + w 2 B sup S < + w 2 B = if sup S < + w 2 B sup S < + w 2 B
50 1 2 3 4 40 41 42 43 44 45 46 47 48 49 icccmplem2 φ u U w + sup S < ball D w u B S
51 50 rexlimdvaa φ u U w + sup S < ball D w u B S
52 39 51 syld φ u U sup S < u B S
53 52 rexlimdva φ u U sup S < u B S
54 30 53 mpd φ B S