Step |
Hyp |
Ref |
Expression |
1 |
|
icccmp.1 |
|
2 |
|
icccmp.2 |
|
3 |
|
icccmp.3 |
|
4 |
|
icccmp.4 |
|
5 |
|
icccmp.5 |
|
6 |
|
icccmp.6 |
|
7 |
|
icccmp.7 |
|
8 |
|
icccmp.8 |
|
9 |
|
icccmp.9 |
|
10 |
4
|
ssrab3 |
|
11 |
|
iccssre |
|
12 |
5 6 11
|
syl2anc |
|
13 |
10 12
|
sstrid |
|
14 |
1 2 3 4 5 6 7 8 9
|
icccmplem1 |
|
15 |
14
|
simpld |
|
16 |
15
|
ne0d |
|
17 |
14
|
simprd |
|
18 |
|
brralrspcev |
|
19 |
6 17 18
|
syl2anc |
|
20 |
13 16 19
|
suprcld |
|
21 |
13 16 19 15
|
suprubd |
|
22 |
|
suprleub |
|
23 |
13 16 19 6 22
|
syl31anc |
|
24 |
17 23
|
mpbird |
|
25 |
|
elicc2 |
|
26 |
5 6 25
|
syl2anc |
|
27 |
20 21 24 26
|
mpbir3and |
|
28 |
9 27
|
sseldd |
|
29 |
|
eluni2 |
|
30 |
28 29
|
sylib |
|
31 |
8
|
sselda |
|
32 |
3
|
rexmet |
|
33 |
|
eqid |
|
34 |
3 33
|
tgioo |
|
35 |
1 34
|
eqtri |
|
36 |
35
|
mopni2 |
|
37 |
32 36
|
mp3an1 |
|
38 |
37
|
ex |
|
39 |
31 38
|
syl |
|
40 |
5
|
ad2antrr |
|
41 |
6
|
ad2antrr |
|
42 |
7
|
ad2antrr |
|
43 |
8
|
ad2antrr |
|
44 |
9
|
ad2antrr |
|
45 |
|
simplr |
|
46 |
|
simprl |
|
47 |
|
simprr |
|
48 |
|
eqid |
|
49 |
|
eqid |
|
50 |
1 2 3 4 40 41 42 43 44 45 46 47 48 49
|
icccmplem2 |
|
51 |
50
|
rexlimdvaa |
|
52 |
39 51
|
syld |
|
53 |
52
|
rexlimdva |
|
54 |
30 53
|
mpd |
|