Metamath Proof Explorer


Theorem idlinsubrg

Description: The intersection between an ideal and a subring is an ideal of the subring. (Contributed by Thierry Arnoux, 6-Jul-2024)

Ref Expression
Hypotheses idlinsubrg.s S=R𝑠A
idlinsubrg.u U=LIdealR
idlinsubrg.v V=LIdealS
Assertion idlinsubrg ASubRingRIUIAV

Proof

Step Hyp Ref Expression
1 idlinsubrg.s S=R𝑠A
2 idlinsubrg.u U=LIdealR
3 idlinsubrg.v V=LIdealS
4 inss2 IAA
5 1 subrgbas ASubRingRA=BaseS
6 4 5 sseqtrid ASubRingRIABaseS
7 6 adantr ASubRingRIUIABaseS
8 subrgrcl ASubRingRRRing
9 eqid 0R=0R
10 2 9 lidl0cl RRingIU0RI
11 8 10 sylan ASubRingRIU0RI
12 subrgsubg ASubRingRASubGrpR
13 subgsubm ASubGrpRASubMndR
14 9 subm0cl ASubMndR0RA
15 12 13 14 3syl ASubRingR0RA
16 15 adantr ASubRingRIU0RA
17 11 16 elind ASubRingRIU0RIA
18 17 ne0d ASubRingRIUIA
19 eqid +R=+R
20 1 19 ressplusg ASubRingR+R=+S
21 eqid R=R
22 1 21 ressmulr ASubRingRR=S
23 22 oveqd ASubRingRxRa=xSa
24 eqidd ASubRingRb=b
25 20 23 24 oveq123d ASubRingRxRa+Rb=xSa+Sb
26 25 ad4antr ASubRingRIUxBaseSaIAbIAxRa+Rb=xSa+Sb
27 8 ad4antr ASubRingRIUxBaseSaIAbIARRing
28 simp-4r ASubRingRIUxBaseSaIAbIAIU
29 eqid BaseR=BaseR
30 29 subrgss ASubRingRABaseR
31 5 30 eqsstrrd ASubRingRBaseSBaseR
32 31 adantr ASubRingRIUBaseSBaseR
33 32 sselda ASubRingRIUxBaseSxBaseR
34 33 ad2antrr ASubRingRIUxBaseSaIAbIAxBaseR
35 inss1 IAI
36 35 a1i ASubRingRIUxBaseSIAI
37 36 sselda ASubRingRIUxBaseSaIAaI
38 37 adantr ASubRingRIUxBaseSaIAbIAaI
39 2 29 21 lidlmcl RRingIUxBaseRaIxRaI
40 27 28 34 38 39 syl22anc ASubRingRIUxBaseSaIAbIAxRaI
41 35 a1i ASubRingRIUxBaseSaIAIAI
42 41 sselda ASubRingRIUxBaseSaIAbIAbI
43 2 19 lidlacl RRingIUxRaIbIxRa+RbI
44 27 28 40 42 43 syl22anc ASubRingRIUxBaseSaIAbIAxRa+RbI
45 simp-4l ASubRingRIUxBaseSaIAbIAASubRingR
46 simpr ASubRingRIUxBaseSxBaseS
47 5 ad2antrr ASubRingRIUxBaseSA=BaseS
48 46 47 eleqtrrd ASubRingRIUxBaseSxA
49 48 ad2antrr ASubRingRIUxBaseSaIAbIAxA
50 4 a1i ASubRingRIUxBaseSIAA
51 50 sselda ASubRingRIUxBaseSaIAaA
52 51 adantr ASubRingRIUxBaseSaIAbIAaA
53 21 subrgmcl ASubRingRxAaAxRaA
54 45 49 52 53 syl3anc ASubRingRIUxBaseSaIAbIAxRaA
55 4 a1i ASubRingRIUxBaseSaIAIAA
56 55 sselda ASubRingRIUxBaseSaIAbIAbA
57 19 subrgacl ASubRingRxRaAbAxRa+RbA
58 45 54 56 57 syl3anc ASubRingRIUxBaseSaIAbIAxRa+RbA
59 44 58 elind ASubRingRIUxBaseSaIAbIAxRa+RbIA
60 26 59 eqeltrrd ASubRingRIUxBaseSaIAbIAxSa+SbIA
61 60 anasss ASubRingRIUxBaseSaIAbIAxSa+SbIA
62 61 ralrimivva ASubRingRIUxBaseSaIAbIAxSa+SbIA
63 62 ralrimiva ASubRingRIUxBaseSaIAbIAxSa+SbIA
64 eqid BaseS=BaseS
65 eqid +S=+S
66 eqid S=S
67 3 64 65 66 islidl IAVIABaseSIAxBaseSaIAbIAxSa+SbIA
68 7 18 63 67 syl3anbrc ASubRingRIUIAV