Description: The intersection between an ideal and a subring is an ideal of the subring. (Contributed by Thierry Arnoux, 6-Jul-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | idlinsubrg.s | |
|
idlinsubrg.u | |
||
idlinsubrg.v | |
||
Assertion | idlinsubrg | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idlinsubrg.s | |
|
2 | idlinsubrg.u | |
|
3 | idlinsubrg.v | |
|
4 | inss2 | |
|
5 | 1 | subrgbas | |
6 | 4 5 | sseqtrid | |
7 | 6 | adantr | |
8 | subrgrcl | |
|
9 | eqid | |
|
10 | 2 9 | lidl0cl | |
11 | 8 10 | sylan | |
12 | subrgsubg | |
|
13 | subgsubm | |
|
14 | 9 | subm0cl | |
15 | 12 13 14 | 3syl | |
16 | 15 | adantr | |
17 | 11 16 | elind | |
18 | 17 | ne0d | |
19 | eqid | |
|
20 | 1 19 | ressplusg | |
21 | eqid | |
|
22 | 1 21 | ressmulr | |
23 | 22 | oveqd | |
24 | eqidd | |
|
25 | 20 23 24 | oveq123d | |
26 | 25 | ad4antr | |
27 | 8 | ad4antr | |
28 | simp-4r | |
|
29 | eqid | |
|
30 | 29 | subrgss | |
31 | 5 30 | eqsstrrd | |
32 | 31 | adantr | |
33 | 32 | sselda | |
34 | 33 | ad2antrr | |
35 | inss1 | |
|
36 | 35 | a1i | |
37 | 36 | sselda | |
38 | 37 | adantr | |
39 | 2 29 21 | lidlmcl | |
40 | 27 28 34 38 39 | syl22anc | |
41 | 35 | a1i | |
42 | 41 | sselda | |
43 | 2 19 | lidlacl | |
44 | 27 28 40 42 43 | syl22anc | |
45 | simp-4l | |
|
46 | simpr | |
|
47 | 5 | ad2antrr | |
48 | 46 47 | eleqtrrd | |
49 | 48 | ad2antrr | |
50 | 4 | a1i | |
51 | 50 | sselda | |
52 | 51 | adantr | |
53 | 21 | subrgmcl | |
54 | 45 49 52 53 | syl3anc | |
55 | 4 | a1i | |
56 | 55 | sselda | |
57 | 19 | subrgacl | |
58 | 45 54 56 57 | syl3anc | |
59 | 44 58 | elind | |
60 | 26 59 | eqeltrrd | |
61 | 60 | anasss | |
62 | 61 | ralrimivva | |
63 | 62 | ralrimiva | |
64 | eqid | |
|
65 | eqid | |
|
66 | eqid | |
|
67 | 3 64 65 66 | islidl | |
68 | 7 18 63 67 | syl3anbrc | |