| Step | Hyp | Ref | Expression | 
						
							| 1 |  | idlinsubrg.s |  | 
						
							| 2 |  | idlinsubrg.u |  | 
						
							| 3 |  | idlinsubrg.v |  | 
						
							| 4 |  | inss2 |  | 
						
							| 5 | 1 | subrgbas |  | 
						
							| 6 | 4 5 | sseqtrid |  | 
						
							| 7 | 6 | adantr |  | 
						
							| 8 |  | subrgrcl |  | 
						
							| 9 |  | eqid |  | 
						
							| 10 | 2 9 | lidl0cl |  | 
						
							| 11 | 8 10 | sylan |  | 
						
							| 12 |  | subrgsubg |  | 
						
							| 13 |  | subgsubm |  | 
						
							| 14 | 9 | subm0cl |  | 
						
							| 15 | 12 13 14 | 3syl |  | 
						
							| 16 | 15 | adantr |  | 
						
							| 17 | 11 16 | elind |  | 
						
							| 18 | 17 | ne0d |  | 
						
							| 19 |  | eqid |  | 
						
							| 20 | 1 19 | ressplusg |  | 
						
							| 21 |  | eqid |  | 
						
							| 22 | 1 21 | ressmulr |  | 
						
							| 23 | 22 | oveqd |  | 
						
							| 24 |  | eqidd |  | 
						
							| 25 | 20 23 24 | oveq123d |  | 
						
							| 26 | 25 | ad4antr |  | 
						
							| 27 | 8 | ad4antr |  | 
						
							| 28 |  | simp-4r |  | 
						
							| 29 |  | eqid |  | 
						
							| 30 | 29 | subrgss |  | 
						
							| 31 | 5 30 | eqsstrrd |  | 
						
							| 32 | 31 | adantr |  | 
						
							| 33 | 32 | sselda |  | 
						
							| 34 | 33 | ad2antrr |  | 
						
							| 35 |  | inss1 |  | 
						
							| 36 | 35 | a1i |  | 
						
							| 37 | 36 | sselda |  | 
						
							| 38 | 37 | adantr |  | 
						
							| 39 | 2 29 21 | lidlmcl |  | 
						
							| 40 | 27 28 34 38 39 | syl22anc |  | 
						
							| 41 | 35 | a1i |  | 
						
							| 42 | 41 | sselda |  | 
						
							| 43 | 2 19 | lidlacl |  | 
						
							| 44 | 27 28 40 42 43 | syl22anc |  | 
						
							| 45 |  | simp-4l |  | 
						
							| 46 |  | simpr |  | 
						
							| 47 | 5 | ad2antrr |  | 
						
							| 48 | 46 47 | eleqtrrd |  | 
						
							| 49 | 48 | ad2antrr |  | 
						
							| 50 | 4 | a1i |  | 
						
							| 51 | 50 | sselda |  | 
						
							| 52 | 51 | adantr |  | 
						
							| 53 | 21 | subrgmcl |  | 
						
							| 54 | 45 49 52 53 | syl3anc |  | 
						
							| 55 | 4 | a1i |  | 
						
							| 56 | 55 | sselda |  | 
						
							| 57 | 19 | subrgacl |  | 
						
							| 58 | 45 54 56 57 | syl3anc |  | 
						
							| 59 | 44 58 | elind |  | 
						
							| 60 | 26 59 | eqeltrrd |  | 
						
							| 61 | 60 | anasss |  | 
						
							| 62 | 61 | ralrimivva |  | 
						
							| 63 | 62 | ralrimiva |  | 
						
							| 64 |  | eqid |  | 
						
							| 65 |  | eqid |  | 
						
							| 66 |  | eqid |  | 
						
							| 67 | 3 64 65 66 | islidl |  | 
						
							| 68 | 7 18 63 67 | syl3anbrc |  |