Metamath Proof Explorer


Theorem imasaddfnlem

Description: The image structure operation is a function if the original operation is compatible with the function. (Contributed by Mario Carneiro, 23-Feb-2015)

Ref Expression
Hypotheses imasaddf.f φF:VontoB
imasaddf.e φaVbVpVqVFa=FpFb=FqFa·˙b=Fp·˙q
imasaddflem.a φ˙=pVqVFpFqFp·˙q
Assertion imasaddfnlem φ˙FnB×B

Proof

Step Hyp Ref Expression
1 imasaddf.f φF:VontoB
2 imasaddf.e φaVbVpVqVFa=FpFb=FqFa·˙b=Fp·˙q
3 imasaddflem.a φ˙=pVqVFpFqFp·˙q
4 opex FpFqV
5 fvex Fp·˙qV
6 4 5 relsnop RelFpFqFp·˙q
7 6 rgenw qVRelFpFqFp·˙q
8 reliun RelqVFpFqFp·˙qqVRelFpFqFp·˙q
9 7 8 mpbir RelqVFpFqFp·˙q
10 9 rgenw pVRelqVFpFqFp·˙q
11 reliun RelpVqVFpFqFp·˙qpVRelqVFpFqFp·˙q
12 10 11 mpbir RelpVqVFpFqFp·˙q
13 3 releqd φRel˙RelpVqVFpFqFp·˙q
14 12 13 mpbiri φRel˙
15 fof F:VontoBF:VB
16 1 15 syl φF:VB
17 ffvelcdm F:VBpVFpB
18 ffvelcdm F:VBqVFqB
19 17 18 anim12dan F:VBpVqVFpBFqB
20 16 19 sylan φpVqVFpBFqB
21 opelxpi FpBFqBFpFqB×B
22 20 21 syl φpVqVFpFqB×B
23 opelxpi FpFqB×BFp·˙qVFpFqFp·˙qB×B×V
24 22 5 23 sylancl φpVqVFpFqFp·˙qB×B×V
25 24 snssd φpVqVFpFqFp·˙qB×B×V
26 25 anassrs φpVqVFpFqFp·˙qB×B×V
27 26 iunssd φpVqVFpFqFp·˙qB×B×V
28 27 iunssd φpVqVFpFqFp·˙qB×B×V
29 3 28 eqsstrd φ˙B×B×V
30 dmss ˙B×B×Vdom˙domB×B×V
31 29 30 syl φdom˙domB×B×V
32 vn0 V
33 dmxp VdomB×B×V=B×B
34 32 33 ax-mp domB×B×V=B×B
35 31 34 sseqtrdi φdom˙B×B
36 forn F:VontoBranF=B
37 1 36 syl φranF=B
38 37 sqxpeqd φranF×ranF=B×B
39 35 38 sseqtrrd φdom˙ranF×ranF
40 3 eleq2d φFaFbw˙FaFbwpVqVFpFqFp·˙q
41 40 adantr φaVbVFaFbw˙FaFbwpVqVFpFqFp·˙q
42 df-br FaFb˙wFaFbw˙
43 eliun FaFbwpVqVFpFqFp·˙qpVFaFbwqVFpFqFp·˙q
44 eliun FaFbwqVFpFqFp·˙qqVFaFbwFpFqFp·˙q
45 44 rexbii pVFaFbwqVFpFqFp·˙qpVqVFaFbwFpFqFp·˙q
46 43 45 bitr2i pVqVFaFbwFpFqFp·˙qFaFbwpVqVFpFqFp·˙q
47 41 42 46 3bitr4g φaVbVFaFb˙wpVqVFaFbwFpFqFp·˙q
48 opex FaFbwV
49 48 elsn FaFbwFpFqFp·˙qFaFbw=FpFqFp·˙q
50 opex FaFbV
51 vex wV
52 50 51 opth FaFbw=FpFqFp·˙qFaFb=FpFqw=Fp·˙q
53 fvex FaV
54 fvex FbV
55 53 54 opth FaFb=FpFqFa=FpFb=Fq
56 55 2 biimtrid φaVbVpVqVFaFb=FpFqFa·˙b=Fp·˙q
57 eqeq2 Fa·˙b=Fp·˙qw=Fa·˙bw=Fp·˙q
58 57 biimprd Fa·˙b=Fp·˙qw=Fp·˙qw=Fa·˙b
59 56 58 syl6 φaVbVpVqVFaFb=FpFqw=Fp·˙qw=Fa·˙b
60 59 impd φaVbVpVqVFaFb=FpFqw=Fp·˙qw=Fa·˙b
61 52 60 biimtrid φaVbVpVqVFaFbw=FpFqFp·˙qw=Fa·˙b
62 49 61 biimtrid φaVbVpVqVFaFbwFpFqFp·˙qw=Fa·˙b
63 62 3expa φaVbVpVqVFaFbwFpFqFp·˙qw=Fa·˙b
64 63 rexlimdvva φaVbVpVqVFaFbwFpFqFp·˙qw=Fa·˙b
65 47 64 sylbid φaVbVFaFb˙ww=Fa·˙b
66 65 alrimiv φaVbVwFaFb˙ww=Fa·˙b
67 mo2icl wFaFb˙ww=Fa·˙b*wFaFb˙w
68 66 67 syl φaVbV*wFaFb˙w
69 68 ralrimivva φaVbV*wFaFb˙w
70 fofn F:VontoBFFnV
71 1 70 syl φFFnV
72 opeq2 z=FbFaz=FaFb
73 72 breq1d z=FbFaz˙wFaFb˙w
74 73 mobidv z=Fb*wFaz˙w*wFaFb˙w
75 74 ralrn FFnVzranF*wFaz˙wbV*wFaFb˙w
76 71 75 syl φzranF*wFaz˙wbV*wFaFb˙w
77 76 ralbidv φaVzranF*wFaz˙waVbV*wFaFb˙w
78 69 77 mpbird φaVzranF*wFaz˙w
79 opeq1 y=Fayz=Faz
80 79 breq1d y=Fayz˙wFaz˙w
81 80 mobidv y=Fa*wyz˙w*wFaz˙w
82 81 ralbidv y=FazranF*wyz˙wzranF*wFaz˙w
83 82 ralrn FFnVyranFzranF*wyz˙waVzranF*wFaz˙w
84 71 83 syl φyranFzranF*wyz˙waVzranF*wFaz˙w
85 78 84 mpbird φyranFzranF*wyz˙w
86 breq1 x=yzx˙wyz˙w
87 86 mobidv x=yz*wx˙w*wyz˙w
88 87 ralxp xranF×ranF*wx˙wyranFzranF*wyz˙w
89 85 88 sylibr φxranF×ranF*wx˙w
90 ssralv dom˙ranF×ranFxranF×ranF*wx˙wxdom˙*wx˙w
91 39 89 90 sylc φxdom˙*wx˙w
92 dffun7 Fun˙Rel˙xdom˙*wx˙w
93 14 91 92 sylanbrc φFun˙
94 eqimss2 ˙=pVqVFpFqFp·˙qpVqVFpFqFp·˙q˙
95 3 94 syl φpVqVFpFqFp·˙q˙
96 iunss pVqVFpFqFp·˙q˙pVqVFpFqFp·˙q˙
97 95 96 sylib φpVqVFpFqFp·˙q˙
98 iunss qVFpFqFp·˙q˙qVFpFqFp·˙q˙
99 opex FpFqFp·˙qV
100 99 snss FpFqFp·˙q˙FpFqFp·˙q˙
101 4 5 opeldm FpFqFp·˙q˙FpFqdom˙
102 100 101 sylbir FpFqFp·˙q˙FpFqdom˙
103 102 ralimi qVFpFqFp·˙q˙qVFpFqdom˙
104 98 103 sylbi qVFpFqFp·˙q˙qVFpFqdom˙
105 104 ralimi pVqVFpFqFp·˙q˙pVqVFpFqdom˙
106 97 105 syl φpVqVFpFqdom˙
107 opeq2 z=FqFpz=FpFq
108 107 eleq1d z=FqFpzdom˙FpFqdom˙
109 108 ralrn FFnVzranFFpzdom˙qVFpFqdom˙
110 71 109 syl φzranFFpzdom˙qVFpFqdom˙
111 110 ralbidv φpVzranFFpzdom˙pVqVFpFqdom˙
112 106 111 mpbird φpVzranFFpzdom˙
113 opeq1 y=Fpyz=Fpz
114 113 eleq1d y=Fpyzdom˙Fpzdom˙
115 114 ralbidv y=FpzranFyzdom˙zranFFpzdom˙
116 115 ralrn FFnVyranFzranFyzdom˙pVzranFFpzdom˙
117 71 116 syl φyranFzranFyzdom˙pVzranFFpzdom˙
118 112 117 mpbird φyranFzranFyzdom˙
119 eleq1 x=yzxdom˙yzdom˙
120 119 ralxp xranF×ranFxdom˙yranFzranFyzdom˙
121 118 120 sylibr φxranF×ranFxdom˙
122 dfss3 ranF×ranFdom˙xranF×ranFxdom˙
123 121 122 sylibr φranF×ranFdom˙
124 38 123 eqsstrrd φB×Bdom˙
125 35 124 eqssd φdom˙=B×B
126 df-fn ˙FnB×BFun˙dom˙=B×B
127 93 125 126 sylanbrc φ˙FnB×B