| Step |
Hyp |
Ref |
Expression |
| 1 |
|
imasubc.s |
|
| 2 |
|
imasubc.h |
|
| 3 |
|
imasubc.k |
|
| 4 |
|
imassc.f |
|
| 5 |
|
imassc.j |
|
| 6 |
|
eqid |
|
| 7 |
|
eqid |
|
| 8 |
6 7 4
|
funcf1 |
|
| 9 |
8
|
fimassd |
|
| 10 |
1 9
|
eqsstrid |
|
| 11 |
|
eqid |
|
| 12 |
4
|
ad2antrr |
|
| 13 |
6 7 12
|
funcf1 |
|
| 14 |
13
|
ffnd |
|
| 15 |
|
simprl |
|
| 16 |
|
fniniseg |
|
| 17 |
16
|
biimpa |
|
| 18 |
14 15 17
|
syl2anc |
|
| 19 |
18
|
simpld |
|
| 20 |
|
simprr |
|
| 21 |
|
fniniseg |
|
| 22 |
21
|
biimpa |
|
| 23 |
14 20 22
|
syl2anc |
|
| 24 |
23
|
simpld |
|
| 25 |
6 2 11 12 19 24
|
funcf2 |
|
| 26 |
25
|
fimassd |
|
| 27 |
18
|
simprd |
|
| 28 |
23
|
simprd |
|
| 29 |
27 28
|
oveq12d |
|
| 30 |
26 29
|
sseqtrd |
|
| 31 |
30
|
ralrimivva |
|
| 32 |
|
iunss |
|
| 33 |
|
fveq2 |
|
| 34 |
|
df-ov |
|
| 35 |
33 34
|
eqtr4di |
|
| 36 |
|
fveq2 |
|
| 37 |
|
df-ov |
|
| 38 |
36 37
|
eqtr4di |
|
| 39 |
35 38
|
imaeq12d |
|
| 40 |
39
|
sseq1d |
|
| 41 |
40
|
ralxp |
|
| 42 |
32 41
|
bitri |
|
| 43 |
31 42
|
sylibr |
|
| 44 |
|
relfunc |
|
| 45 |
44
|
brrelex1i |
|
| 46 |
4 45
|
syl |
|
| 47 |
46
|
adantr |
|
| 48 |
|
simprl |
|
| 49 |
|
simprr |
|
| 50 |
47 47 48 49 3
|
imasubclem3 |
|
| 51 |
10
|
adantr |
|
| 52 |
51 48
|
sseldd |
|
| 53 |
51 49
|
sseldd |
|
| 54 |
5 7 11 52 53
|
homfval |
|
| 55 |
43 50 54
|
3sstr4d |
|
| 56 |
55
|
ralrimivva |
|
| 57 |
46 46 3
|
imasubclem2 |
|
| 58 |
5 7
|
homffn |
|
| 59 |
58
|
a1i |
|
| 60 |
|
fvexd |
|
| 61 |
57 59 60
|
isssc |
|
| 62 |
10 56 61
|
mpbir2and |
|