Step |
Hyp |
Ref |
Expression |
1 |
|
isinag.p |
|
2 |
|
isinag.i |
|
3 |
|
isinag.k |
|
4 |
|
isinag.x |
|
5 |
|
isinag.a |
|
6 |
|
isinag.b |
|
7 |
|
isinag.c |
|
8 |
|
inagflat.g |
|
9 |
|
inagswap.1 |
|
10 |
|
inaghl.d |
|
11 |
|
inaghl.f |
|
12 |
|
inaghl.y |
|
13 |
|
inaghl.1 |
|
14 |
|
inaghl.2 |
|
15 |
|
inaghl.3 |
|
16 |
1 2 3 10 5 6 8 13
|
hlne1 |
|
17 |
1 2 3 11 7 6 8 14
|
hlne1 |
|
18 |
1 2 3 12 4 6 8 15
|
hlne1 |
|
19 |
16 17 18
|
3jca |
|
20 |
6
|
adantr |
|
21 |
|
eleq1 |
|
22 |
|
eqeq1 |
|
23 |
|
breq1 |
|
24 |
22 23
|
orbi12d |
|
25 |
21 24
|
anbi12d |
|
26 |
25
|
adantl |
|
27 |
5
|
adantr |
|
28 |
10
|
adantr |
|
29 |
11
|
adantr |
|
30 |
8
|
adantr |
|
31 |
1 2 3 10 5 6 8 13
|
hlcomd |
|
32 |
31
|
adantr |
|
33 |
|
eqid |
|
34 |
7
|
adantr |
|
35 |
1 2 3 11 7 6 8 14
|
hlcomd |
|
36 |
35
|
adantr |
|
37 |
|
simpr |
|
38 |
1 33 2 30 27 20 34 37
|
tgbtwncom |
|
39 |
1 2 3 34 29 27 30 20 36 38
|
btwnhl |
|
40 |
1 33 2 30 29 20 27 39
|
tgbtwncom |
|
41 |
1 2 3 27 28 29 30 20 32 40
|
btwnhl |
|
42 |
|
eqidd |
|
43 |
42
|
orcd |
|
44 |
41 43
|
jca |
|
45 |
20 26 44
|
rspcedvd |
|
46 |
|
simpllr |
|
47 |
|
simpr |
|
48 |
47
|
eleq1d |
|
49 |
47
|
eqeq1d |
|
50 |
47
|
breq1d |
|
51 |
49 50
|
orbi12d |
|
52 |
48 51
|
anbi12d |
|
53 |
|
simpr |
|
54 |
5
|
ad4antr |
|
55 |
10
|
ad4antr |
|
56 |
11
|
ad4antr |
|
57 |
8
|
ad4antr |
|
58 |
6
|
ad4antr |
|
59 |
31
|
ad4antr |
|
60 |
7
|
ad4antr |
|
61 |
35
|
ad4antr |
|
62 |
|
simplr |
|
63 |
1 33 2 57 54 46 60 62
|
tgbtwncom |
|
64 |
53 63
|
eqeltrrd |
|
65 |
1 2 3 60 56 54 57 58 61 64
|
btwnhl |
|
66 |
1 33 2 57 56 58 54 65
|
tgbtwncom |
|
67 |
1 2 3 54 55 56 57 58 59 66
|
btwnhl |
|
68 |
53 67
|
eqeltrd |
|
69 |
53
|
orcd |
|
70 |
68 69
|
jca |
|
71 |
46 52 70
|
rspcedvd |
|
72 |
8
|
ad4antr |
|
73 |
72
|
ad2antrr |
|
74 |
|
simplr |
|
75 |
6
|
ad4antr |
|
76 |
75
|
ad2antrr |
|
77 |
7
|
ad4antr |
|
78 |
77
|
ad2antrr |
|
79 |
10
|
ad4antr |
|
80 |
79
|
ad2antrr |
|
81 |
11
|
ad6antr |
|
82 |
|
simpllr |
|
83 |
82
|
ad2antrr |
|
84 |
|
simprl |
|
85 |
1 2 3 83 74 76 73 84
|
hlne2 |
|
86 |
35
|
ad6antr |
|
87 |
|
simprr |
|
88 |
1 33 2 73 78 74 80 87
|
tgbtwncom |
|
89 |
1 2 3 73 74 76 78 80 81 85 86 88
|
hlpasch |
|
90 |
|
simprr |
|
91 |
|
simplr |
|
92 |
74
|
ad2antrr |
|
93 |
12
|
ad8antr |
|
94 |
73
|
ad2antrr |
|
95 |
76
|
ad2antrr |
|
96 |
|
simprl |
|
97 |
1 2 3 92 91 95 94 96
|
hlcomd |
|
98 |
82
|
ad4antr |
|
99 |
4
|
ad8antr |
|
100 |
15
|
ad8antr |
|
101 |
|
simp-5r |
|
102 |
1 2 3 98 99 95 94 101
|
hlcomd |
|
103 |
1 2 3 93 99 98 94 95 100 102
|
hltr |
|
104 |
|
simpllr |
|
105 |
104
|
simpld |
|
106 |
1 2 3 93 98 92 94 95 103 105
|
hltr |
|
107 |
1 2 3 93 92 95 94 106
|
hlcomd |
|
108 |
1 2 3 91 92 93 94 95 97 107
|
hltr |
|
109 |
108
|
olcd |
|
110 |
90 109
|
jca |
|
111 |
110
|
ex |
|
112 |
111
|
reximdva |
|
113 |
89 112
|
mpd |
|
114 |
5
|
ad4antr |
|
115 |
4
|
ad4antr |
|
116 |
|
simpr |
|
117 |
1 2 3 82 115 75 72 116
|
hlne1 |
|
118 |
31
|
ad4antr |
|
119 |
|
simplr |
|
120 |
1 33 2 72 114 82 77 119
|
tgbtwncom |
|
121 |
1 2 3 72 82 75 114 77 79 117 118 120
|
hlpasch |
|
122 |
113 121
|
r19.29a |
|
123 |
71 122
|
jaodan |
|
124 |
123
|
anasss |
|
125 |
1 2 3 4 5 6 7 8
|
isinag |
|
126 |
9 125
|
mpbid |
|
127 |
126
|
simprd |
|
128 |
127
|
adantr |
|
129 |
124 128
|
r19.29a |
|
130 |
45 129
|
pm2.61dan |
|
131 |
1 2 3 12 10 6 11 8
|
isinag |
|
132 |
19 130 131
|
mpbir2and |
|