| Step | Hyp | Ref | Expression | 
						
							| 1 |  | isinag.p |  | 
						
							| 2 |  | isinag.i |  | 
						
							| 3 |  | isinag.k |  | 
						
							| 4 |  | isinag.x |  | 
						
							| 5 |  | isinag.a |  | 
						
							| 6 |  | isinag.b |  | 
						
							| 7 |  | isinag.c |  | 
						
							| 8 |  | inagflat.g |  | 
						
							| 9 |  | inagswap.1 |  | 
						
							| 10 |  | inaghl.d |  | 
						
							| 11 |  | inaghl.f |  | 
						
							| 12 |  | inaghl.y |  | 
						
							| 13 |  | inaghl.1 |  | 
						
							| 14 |  | inaghl.2 |  | 
						
							| 15 |  | inaghl.3 |  | 
						
							| 16 | 1 2 3 10 5 6 8 13 | hlne1 |  | 
						
							| 17 | 1 2 3 11 7 6 8 14 | hlne1 |  | 
						
							| 18 | 1 2 3 12 4 6 8 15 | hlne1 |  | 
						
							| 19 | 16 17 18 | 3jca |  | 
						
							| 20 | 6 | adantr |  | 
						
							| 21 |  | eleq1 |  | 
						
							| 22 |  | eqeq1 |  | 
						
							| 23 |  | breq1 |  | 
						
							| 24 | 22 23 | orbi12d |  | 
						
							| 25 | 21 24 | anbi12d |  | 
						
							| 26 | 25 | adantl |  | 
						
							| 27 | 5 | adantr |  | 
						
							| 28 | 10 | adantr |  | 
						
							| 29 | 11 | adantr |  | 
						
							| 30 | 8 | adantr |  | 
						
							| 31 | 1 2 3 10 5 6 8 13 | hlcomd |  | 
						
							| 32 | 31 | adantr |  | 
						
							| 33 |  | eqid |  | 
						
							| 34 | 7 | adantr |  | 
						
							| 35 | 1 2 3 11 7 6 8 14 | hlcomd |  | 
						
							| 36 | 35 | adantr |  | 
						
							| 37 |  | simpr |  | 
						
							| 38 | 1 33 2 30 27 20 34 37 | tgbtwncom |  | 
						
							| 39 | 1 2 3 34 29 27 30 20 36 38 | btwnhl |  | 
						
							| 40 | 1 33 2 30 29 20 27 39 | tgbtwncom |  | 
						
							| 41 | 1 2 3 27 28 29 30 20 32 40 | btwnhl |  | 
						
							| 42 |  | eqidd |  | 
						
							| 43 | 42 | orcd |  | 
						
							| 44 | 41 43 | jca |  | 
						
							| 45 | 20 26 44 | rspcedvd |  | 
						
							| 46 |  | simpllr |  | 
						
							| 47 |  | simpr |  | 
						
							| 48 | 47 | eleq1d |  | 
						
							| 49 | 47 | eqeq1d |  | 
						
							| 50 | 47 | breq1d |  | 
						
							| 51 | 49 50 | orbi12d |  | 
						
							| 52 | 48 51 | anbi12d |  | 
						
							| 53 |  | simpr |  | 
						
							| 54 | 5 | ad4antr |  | 
						
							| 55 | 10 | ad4antr |  | 
						
							| 56 | 11 | ad4antr |  | 
						
							| 57 | 8 | ad4antr |  | 
						
							| 58 | 6 | ad4antr |  | 
						
							| 59 | 31 | ad4antr |  | 
						
							| 60 | 7 | ad4antr |  | 
						
							| 61 | 35 | ad4antr |  | 
						
							| 62 |  | simplr |  | 
						
							| 63 | 1 33 2 57 54 46 60 62 | tgbtwncom |  | 
						
							| 64 | 53 63 | eqeltrrd |  | 
						
							| 65 | 1 2 3 60 56 54 57 58 61 64 | btwnhl |  | 
						
							| 66 | 1 33 2 57 56 58 54 65 | tgbtwncom |  | 
						
							| 67 | 1 2 3 54 55 56 57 58 59 66 | btwnhl |  | 
						
							| 68 | 53 67 | eqeltrd |  | 
						
							| 69 | 53 | orcd |  | 
						
							| 70 | 68 69 | jca |  | 
						
							| 71 | 46 52 70 | rspcedvd |  | 
						
							| 72 | 8 | ad4antr |  | 
						
							| 73 | 72 | ad2antrr |  | 
						
							| 74 |  | simplr |  | 
						
							| 75 | 6 | ad4antr |  | 
						
							| 76 | 75 | ad2antrr |  | 
						
							| 77 | 7 | ad4antr |  | 
						
							| 78 | 77 | ad2antrr |  | 
						
							| 79 | 10 | ad4antr |  | 
						
							| 80 | 79 | ad2antrr |  | 
						
							| 81 | 11 | ad6antr |  | 
						
							| 82 |  | simpllr |  | 
						
							| 83 | 82 | ad2antrr |  | 
						
							| 84 |  | simprl |  | 
						
							| 85 | 1 2 3 83 74 76 73 84 | hlne2 |  | 
						
							| 86 | 35 | ad6antr |  | 
						
							| 87 |  | simprr |  | 
						
							| 88 | 1 33 2 73 78 74 80 87 | tgbtwncom |  | 
						
							| 89 | 1 2 3 73 74 76 78 80 81 85 86 88 | hlpasch |  | 
						
							| 90 |  | simprr |  | 
						
							| 91 |  | simplr |  | 
						
							| 92 | 74 | ad2antrr |  | 
						
							| 93 | 12 | ad8antr |  | 
						
							| 94 | 73 | ad2antrr |  | 
						
							| 95 | 76 | ad2antrr |  | 
						
							| 96 |  | simprl |  | 
						
							| 97 | 1 2 3 92 91 95 94 96 | hlcomd |  | 
						
							| 98 | 82 | ad4antr |  | 
						
							| 99 | 4 | ad8antr |  | 
						
							| 100 | 15 | ad8antr |  | 
						
							| 101 |  | simp-5r |  | 
						
							| 102 | 1 2 3 98 99 95 94 101 | hlcomd |  | 
						
							| 103 | 1 2 3 93 99 98 94 95 100 102 | hltr |  | 
						
							| 104 |  | simpllr |  | 
						
							| 105 | 104 | simpld |  | 
						
							| 106 | 1 2 3 93 98 92 94 95 103 105 | hltr |  | 
						
							| 107 | 1 2 3 93 92 95 94 106 | hlcomd |  | 
						
							| 108 | 1 2 3 91 92 93 94 95 97 107 | hltr |  | 
						
							| 109 | 108 | olcd |  | 
						
							| 110 | 90 109 | jca |  | 
						
							| 111 | 110 | ex |  | 
						
							| 112 | 111 | reximdva |  | 
						
							| 113 | 89 112 | mpd |  | 
						
							| 114 | 5 | ad4antr |  | 
						
							| 115 | 4 | ad4antr |  | 
						
							| 116 |  | simpr |  | 
						
							| 117 | 1 2 3 82 115 75 72 116 | hlne1 |  | 
						
							| 118 | 31 | ad4antr |  | 
						
							| 119 |  | simplr |  | 
						
							| 120 | 1 33 2 72 114 82 77 119 | tgbtwncom |  | 
						
							| 121 | 1 2 3 72 82 75 114 77 79 117 118 120 | hlpasch |  | 
						
							| 122 | 113 121 | r19.29a |  | 
						
							| 123 | 71 122 | jaodan |  | 
						
							| 124 | 123 | anasss |  | 
						
							| 125 | 1 2 3 4 5 6 7 8 | isinag |  | 
						
							| 126 | 9 125 | mpbid |  | 
						
							| 127 | 126 | simprd |  | 
						
							| 128 | 127 | adantr |  | 
						
							| 129 | 124 128 | r19.29a |  | 
						
							| 130 | 45 129 | pm2.61dan |  | 
						
							| 131 | 1 2 3 12 10 6 11 8 | isinag |  | 
						
							| 132 | 19 130 131 | mpbir2and |  |