Metamath Proof Explorer


Theorem hlpasch

Description: An application of the axiom of Pasch for half-lines. (Contributed by Thierry Arnoux, 15-Sep-2020)

Ref Expression
Hypotheses hlpasch.p P=BaseG
hlpasch.i I=ItvG
hlpasch.k K=hl𝒢G
hlpasch.g φG𝒢Tarski
hlpasch.1 φAP
hlpasch.2 φBP
hlpasch.3 φCP
hlpasch.4 φXP
hlpasch.5 φDP
hlpasch.6 φAB
hlpasch.7 φCKBD
hlpasch.8 φAXIC
Assertion hlpasch φePAKBeeXID

Proof

Step Hyp Ref Expression
1 hlpasch.p P=BaseG
2 hlpasch.i I=ItvG
3 hlpasch.k K=hl𝒢G
4 hlpasch.g φG𝒢Tarski
5 hlpasch.1 φAP
6 hlpasch.2 φBP
7 hlpasch.3 φCP
8 hlpasch.4 φXP
9 hlpasch.5 φDP
10 hlpasch.6 φAB
11 hlpasch.7 φCKBD
12 hlpasch.8 φAXIC
13 eqid Line𝒢G=Line𝒢G
14 4 adantr φCBIDG𝒢Tarski
15 9 adantr φCBIDDP
16 8 adantr φCBIDXP
17 7 adantr φCBIDCP
18 6 adantr φCBIDBP
19 5 adantr φCBIDAP
20 eqid distG=distG
21 simpr φCBIDCBID
22 1 20 2 14 18 17 15 21 tgbtwncom φCBIDCDIB
23 12 adantr φCBIDAXIC
24 1 2 13 14 15 16 17 18 19 22 23 outpasch φCBIDePeDIXABIe
25 simplr φCBIDePeDIXABIeeP
26 18 ad2antrr φCBIDePeDIXABIeBP
27 19 ad2antrr φCBIDePeDIXABIeAP
28 14 ad2antrr φCBIDePeDIXABIeG𝒢Tarski
29 simprr φCBIDePeDIXABIeABIe
30 1 20 2 28 26 27 25 29 tgbtwncom φCBIDePeDIXABIeAeIB
31 28 adantr φCBIDePeDIXABIee=BG𝒢Tarski
32 26 adantr φCBIDePeDIXABIee=BBP
33 27 adantr φCBIDePeDIXABIee=BAP
34 simplrr φCBIDePeDIXABIee=BABIe
35 simpr φCBIDePeDIXABIee=Be=B
36 35 oveq2d φCBIDePeDIXABIee=BBIe=BIB
37 34 36 eleqtrd φCBIDePeDIXABIee=BABIB
38 1 20 2 31 32 33 37 axtgbtwnid φCBIDePeDIXABIee=BB=A
39 38 eqcomd φCBIDePeDIXABIee=BA=B
40 10 ad3antrrr φCBIDePeDIXABIeAB
41 40 adantr φCBIDePeDIXABIee=BAB
42 41 neneqd φCBIDePeDIXABIee=B¬A=B
43 39 42 pm2.65da φCBIDePeDIXABIe¬e=B
44 43 neqned φCBIDePeDIXABIeeB
45 1 2 3 25 26 27 28 27 30 44 40 btwnhl2 φCBIDePeDIXABIeAKBe
46 15 ad2antrr φCBIDePeDIXABIeDP
47 16 ad2antrr φCBIDePeDIXABIeXP
48 simprl φCBIDePeDIXABIeeDIX
49 1 20 2 28 46 25 47 48 tgbtwncom φCBIDePeDIXABIeeXID
50 45 49 jca φCBIDePeDIXABIeAKBeeXID
51 50 ex φCBIDePeDIXABIeAKBeeXID
52 51 reximdva φCBIDePeDIXABIeePAKBeeXID
53 24 52 mpd φCBIDePAKBeeXID
54 9 ad2antrr φDBICXBLine𝒢GDDP
55 54 adantr φDBICXBLine𝒢GDX=BDP
56 simpr φDBICXBLine𝒢GDX=Be=De=D
57 56 breq2d φDBICXBLine𝒢GDX=Be=DAKBeAKBD
58 56 eleq1d φDBICXBLine𝒢GDX=Be=DeXIDDXID
59 57 58 anbi12d φDBICXBLine𝒢GDX=Be=DAKBeeXIDAKBDDXID
60 5 ad2antrr φDBICXBLine𝒢GDAP
61 60 adantr φDBICXBLine𝒢GDX=BAP
62 6 ad2antrr φDBICXBLine𝒢GDBP
63 62 adantr φDBICXBLine𝒢GDX=BBP
64 4 ad2antrr φDBICXBLine𝒢GDG𝒢Tarski
65 64 adantr φDBICXBLine𝒢GDX=BG𝒢Tarski
66 1 2 3 7 9 6 4 11 hlcomd φDKBC
67 66 ad3antrrr φDBICXBLine𝒢GDX=BDKBC
68 7 adantr φDBICCP
69 68 ad2antrr φDBICXBLine𝒢GDX=BCP
70 12 adantr φDBICAXIC
71 70 ad2antrr φDBICXBLine𝒢GDX=BAXIC
72 simpr φDBICXBLine𝒢GDX=BX=B
73 72 oveq1d φDBICXBLine𝒢GDX=BXIC=BIC
74 71 73 eleqtrd φDBICXBLine𝒢GDX=BABIC
75 1 2 3 7 9 6 4 ishlg φCKBDCBDBCBIDDBIC
76 11 75 mpbid φCBDBCBIDDBIC
77 76 simp1d φCB
78 77 ad3antrrr φDBICXBLine𝒢GDX=BCB
79 10 ad2antrr φDBICXBLine𝒢GDAB
80 79 adantr φDBICXBLine𝒢GDX=BAB
81 1 2 3 55 69 63 65 61 74 78 80 hlbtwn φDBICXBLine𝒢GDX=BDKBCDKBA
82 67 81 mpbid φDBICXBLine𝒢GDX=BDKBA
83 1 2 3 55 61 63 65 82 hlcomd φDBICXBLine𝒢GDX=BAKBD
84 8 ad2antrr φDBICXBLine𝒢GDXP
85 84 adantr φDBICXBLine𝒢GDX=BXP
86 1 20 2 65 85 55 tgbtwntriv2 φDBICXBLine𝒢GDX=BDXID
87 83 86 jca φDBICXBLine𝒢GDX=BAKBDDXID
88 55 59 87 rspcedvd φDBICXBLine𝒢GDX=BePAKBeeXID
89 84 ad2antrr φDBICXBLine𝒢GDXBAKBXXP
90 simpr φDBICXBLine𝒢GDe=Xe=X
91 90 breq2d φDBICXBLine𝒢GDe=XAKBeAKBX
92 90 eleq1d φDBICXBLine𝒢GDe=XeXIDXXID
93 91 92 anbi12d φDBICXBLine𝒢GDe=XAKBeeXIDAKBXXXID
94 93 ad4ant14 φDBICXBLine𝒢GDXBAKBXe=XAKBeeXIDAKBXXXID
95 simpr φDBICXBLine𝒢GDXBAKBXAKBX
96 1 20 2 64 84 54 tgbtwntriv1 φDBICXBLine𝒢GDXXID
97 96 ad2antrr φDBICXBLine𝒢GDXBAKBXXXID
98 95 97 jca φDBICXBLine𝒢GDXBAKBXAKBXXXID
99 89 94 98 rspcedvd φDBICXBLine𝒢GDXBAKBXePAKBeeXID
100 54 ad2antrr φDBICXBLine𝒢GDXBBXIADP
101 simpr φDBICXBLine𝒢GDXBBXIAe=De=D
102 101 breq2d φDBICXBLine𝒢GDXBBXIAe=DAKBeAKBD
103 101 eleq1d φDBICXBLine𝒢GDXBBXIAe=DeXIDDXID
104 102 103 anbi12d φDBICXBLine𝒢GDXBBXIAe=DAKBeeXIDAKBDDXID
105 79 ad2antrr φDBICXBLine𝒢GDXBBXIAAB
106 1 2 3 7 9 6 4 11 hlne2 φDB
107 106 ad4antr φDBICXBLine𝒢GDXBBXIADB
108 64 ad2antrr φDBICXBLine𝒢GDXBBXIAG𝒢Tarski
109 62 ad2antrr φDBICXBLine𝒢GDXBBXIABP
110 60 ad2antrr φDBICXBLine𝒢GDXBBXIAAP
111 68 ad2antrr φDBICXBLine𝒢GDXBCP
112 111 adantr φDBICXBLine𝒢GDXBBXIACP
113 84 ad2antrr φDBICXBLine𝒢GDXBBXIAXP
114 simpr φDBICXBLine𝒢GDXBBXIABXIA
115 70 ad2antrr φDBICXBLine𝒢GDXBAXIC
116 115 adantr φDBICXBLine𝒢GDXBBXIAAXIC
117 1 20 2 108 113 109 110 112 114 116 tgbtwnexch3 φDBICXBLine𝒢GDXBBXIAABIC
118 simp-4r φDBICXBLine𝒢GDXBBXIADBIC
119 1 2 108 109 110 100 112 117 118 tgbtwnconn3 φDBICXBLine𝒢GDXBBXIAABIDDBIA
120 1 2 3 5 9 6 4 ishlg φAKBDABDBABIDDBIA
121 120 ad4antr φDBICXBLine𝒢GDXBBXIAAKBDABDBABIDDBIA
122 105 107 119 121 mpbir3and φDBICXBLine𝒢GDXBBXIAAKBD
123 1 20 2 108 113 100 tgbtwntriv2 φDBICXBLine𝒢GDXBBXIADXID
124 122 123 jca φDBICXBLine𝒢GDXBBXIAAKBDDXID
125 100 104 124 rspcedvd φDBICXBLine𝒢GDXBBXIAePAKBeeXID
126 8 ad3antrrr φDBICXBLine𝒢GDXBXP
127 6 ad3antrrr φDBICXBLine𝒢GDXBBP
128 5 ad3antrrr φDBICXBLine𝒢GDXBAP
129 4 ad3antrrr φDBICXBLine𝒢GDXBG𝒢Tarski
130 simpr φDBICXBLine𝒢GDXBXB
131 130 neneqd φDBICXBLine𝒢GDXB¬X=B
132 64 adantr φDBICXBLine𝒢GDXBG𝒢Tarski
133 132 adantr φDBICXBLine𝒢GDXBX=CG𝒢Tarski
134 126 adantr φDBICXBLine𝒢GDXBX=CXP
135 128 adantr φDBICXBLine𝒢GDXBX=CAP
136 115 adantr φDBICXBLine𝒢GDXBX=CAXIC
137 simpr φDBICXBLine𝒢GDXBX=CX=C
138 137 oveq2d φDBICXBLine𝒢GDXBX=CXIX=XIC
139 136 138 eleqtrrd φDBICXBLine𝒢GDXBX=CAXIX
140 1 20 2 133 134 135 139 axtgbtwnid φDBICXBLine𝒢GDXBX=CX=A
141 140 olcd φDBICXBLine𝒢GDXBX=CBXLine𝒢GAX=A
142 132 adantr φDBICXBLine𝒢GDXBXCG𝒢Tarski
143 127 adantr φDBICXBLine𝒢GDXBXCBP
144 111 adantr φDBICXBLine𝒢GDXBXCCP
145 126 adantr φDBICXBLine𝒢GDXBXCXP
146 128 adantr φDBICXBLine𝒢GDXBXCAP
147 simpr φDBICXBLine𝒢GDXBXCXC
148 147 necomd φDBICXBLine𝒢GDXBXCCX
149 148 neneqd φDBICXBLine𝒢GDXBXC¬C=X
150 54 adantr φDBICXBLine𝒢GDXBDP
151 106 ad3antrrr φDBICXBLine𝒢GDXBDB
152 simplr φDBICXBLine𝒢GDXBXBLine𝒢GD
153 1 2 13 132 150 127 126 151 152 lncom φDBICXBLine𝒢GDXBXDLine𝒢GB
154 77 necomd φBC
155 154 ad3antrrr φDBICXBLine𝒢GDXBBC
156 66 ad3antrrr φDBICXBLine𝒢GDXBDKBC
157 1 2 3 150 111 127 132 13 156 hlln φDBICXBLine𝒢GDXBDCLine𝒢GB
158 1 2 13 132 127 111 150 155 157 lncom φDBICXBLine𝒢GDXBDBLine𝒢GC
159 158 orcd φDBICXBLine𝒢GDXBDBLine𝒢GCB=C
160 1 2 13 132 126 150 127 111 153 159 coltr φDBICXBLine𝒢GDXBXBLine𝒢GCB=C
161 1 13 2 132 127 111 126 160 colrot1 φDBICXBLine𝒢GDXBBCLine𝒢GXC=X
162 161 orcomd φDBICXBLine𝒢GDXBC=XBCLine𝒢GX
163 162 adantr φDBICXBLine𝒢GDXBXCC=XBCLine𝒢GX
164 163 ord φDBICXBLine𝒢GDXBXC¬C=XBCLine𝒢GX
165 149 164 mpd φDBICXBLine𝒢GDXBXCBCLine𝒢GX
166 1 13 2 132 126 128 111 115 btwncolg3 φDBICXBLine𝒢GDXBCXLine𝒢GAX=A
167 166 adantr φDBICXBLine𝒢GDXBXCCXLine𝒢GAX=A
168 1 2 13 142 143 144 145 146 165 167 coltr φDBICXBLine𝒢GDXBXCBXLine𝒢GAX=A
169 141 168 pm2.61dane φDBICXBLine𝒢GDXBBXLine𝒢GAX=A
170 1 13 2 132 126 128 127 169 colrot2 φDBICXBLine𝒢GDXBABLine𝒢GXB=X
171 1 13 2 132 127 126 128 170 colcom φDBICXBLine𝒢GDXBAXLine𝒢GBX=B
172 171 orcomd φDBICXBLine𝒢GDXBX=BAXLine𝒢GB
173 172 ord φDBICXBLine𝒢GDXB¬X=BAXLine𝒢GB
174 131 173 mpd φDBICXBLine𝒢GDXBAXLine𝒢GB
175 1 2 3 126 127 128 129 128 13 174 lnhl φDBICXBLine𝒢GDXBAKBXBXIA
176 99 125 175 mpjaodan φDBICXBLine𝒢GDXBePAKBeeXID
177 88 176 pm2.61dane φDBICXBLine𝒢GDePAKBeeXID
178 4 adantr φDBICG𝒢Tarski
179 8 adantr φDBICXP
180 6 adantr φDBICBP
181 5 adantr φDBICAP
182 9 adantr φDBICDP
183 simpr φDBICDBIC
184 1 20 2 178 179 180 68 181 182 70 183 axtgpasch φDBICePeAIBeDIX
185 184 adantr φDBIC¬XBLine𝒢GDePeAIBeDIX
186 simplr φDBIC¬XBLine𝒢GDePeAIBeDIXeP
187 181 ad3antrrr φDBIC¬XBLine𝒢GDePeAIBeDIXAP
188 180 ad3antrrr φDBIC¬XBLine𝒢GDePeAIBeDIXBP
189 178 ad3antrrr φDBIC¬XBLine𝒢GDePeAIBeDIXG𝒢Tarski
190 simprl φDBIC¬XBLine𝒢GDePeAIBeDIXeAIB
191 1 20 2 189 187 186 188 190 tgbtwncom φDBIC¬XBLine𝒢GDePeAIBeDIXeBIA
192 10 necomd φBA
193 192 ad4antr φDBIC¬XBLine𝒢GDePeAIBeDIXBA
194 189 adantr φDBIC¬XBLine𝒢GDePeAIBeDIXe=BG𝒢Tarski
195 9 ad5antr φDBIC¬XBLine𝒢GDePeAIBeDIXe=BDP
196 8 ad5antr φDBIC¬XBLine𝒢GDePeAIBeDIXe=BXP
197 188 adantr φDBIC¬XBLine𝒢GDePeAIBeDIXe=BBP
198 simp-4r φDBIC¬XBLine𝒢GDePeAIBeDIXe=B¬XBLine𝒢GD
199 106 necomd φBD
200 199 ad5antr φDBIC¬XBLine𝒢GDePeAIBeDIXe=BBD
201 200 neneqd φDBIC¬XBLine𝒢GDePeAIBeDIXe=B¬B=D
202 ioran ¬XBLine𝒢GDB=D¬XBLine𝒢GD¬B=D
203 198 201 202 sylanbrc φDBIC¬XBLine𝒢GDePeAIBeDIXe=B¬XBLine𝒢GDB=D
204 1 13 2 194 197 195 196 203 ncolrot2 φDBIC¬XBLine𝒢GDePeAIBeDIXe=B¬DXLine𝒢GBX=B
205 simpr φDBIC¬XBLine𝒢GDePeAIBeDIXe=Be=B
206 186 adantr φDBIC¬XBLine𝒢GDePeAIBeDIXe=BeP
207 1 2 13 194 195 196 197 204 ncolne1 φDBIC¬XBLine𝒢GDePeAIBeDIXe=BDX
208 simplrr φDBIC¬XBLine𝒢GDePeAIBeDIXe=BeDIX
209 1 2 13 194 195 196 206 207 208 btwnlng1 φDBIC¬XBLine𝒢GDePeAIBeDIXe=BeDLine𝒢GX
210 205 209 eqeltrrd φDBIC¬XBLine𝒢GDePeAIBeDIXe=BBDLine𝒢GX
211 1 2 13 194 195 196 207 tglinerflx1 φDBIC¬XBLine𝒢GDePeAIBeDIXe=BDDLine𝒢GX
212 106 ad5antr φDBIC¬XBLine𝒢GDePeAIBeDIXe=BDB
213 212 necomd φDBIC¬XBLine𝒢GDePeAIBeDIXe=BBD
214 1 2 13 194 197 195 213 tglinerflx1 φDBIC¬XBLine𝒢GDePeAIBeDIXe=BBBLine𝒢GD
215 1 2 13 194 197 195 213 tglinerflx2 φDBIC¬XBLine𝒢GDePeAIBeDIXe=BDBLine𝒢GD
216 1 2 13 194 195 196 197 195 204 210 211 214 215 tglineinteq φDBIC¬XBLine𝒢GDePeAIBeDIXe=BB=D
217 216 201 pm2.65da φDBIC¬XBLine𝒢GDePeAIBeDIX¬e=B
218 217 neqned φDBIC¬XBLine𝒢GDePeAIBeDIXeB
219 1 2 3 188 187 186 189 187 191 193 218 btwnhl1 φDBIC¬XBLine𝒢GDePeAIBeDIXeKBA
220 1 2 3 186 187 188 189 219 hlcomd φDBIC¬XBLine𝒢GDePeAIBeDIXAKBe
221 178 ad3antrrr φDBIC¬XBLine𝒢GDePeDIXG𝒢Tarski
222 182 ad3antrrr φDBIC¬XBLine𝒢GDePeDIXDP
223 simplr φDBIC¬XBLine𝒢GDePeDIXeP
224 179 ad3antrrr φDBIC¬XBLine𝒢GDePeDIXXP
225 simpr φDBIC¬XBLine𝒢GDePeDIXeDIX
226 1 20 2 221 222 223 224 225 tgbtwncom φDBIC¬XBLine𝒢GDePeDIXeXID
227 226 adantrl φDBIC¬XBLine𝒢GDePeAIBeDIXeXID
228 220 227 jca φDBIC¬XBLine𝒢GDePeAIBeDIXAKBeeXID
229 228 ex φDBIC¬XBLine𝒢GDePeAIBeDIXAKBeeXID
230 229 reximdva φDBIC¬XBLine𝒢GDePeAIBeDIXePAKBeeXID
231 185 230 mpd φDBIC¬XBLine𝒢GDePAKBeeXID
232 177 231 pm2.61dan φDBICePAKBeeXID
233 76 simp3d φCBIDDBIC
234 53 232 233 mpjaodan φePAKBeeXID