| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hlpasch.p | ⊢ 𝑃  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | hlpasch.i | ⊢ 𝐼  =  ( Itv ‘ 𝐺 ) | 
						
							| 3 |  | hlpasch.k | ⊢ 𝐾  =  ( hlG ‘ 𝐺 ) | 
						
							| 4 |  | hlpasch.g | ⊢ ( 𝜑  →  𝐺  ∈  TarskiG ) | 
						
							| 5 |  | hlpasch.1 | ⊢ ( 𝜑  →  𝐴  ∈  𝑃 ) | 
						
							| 6 |  | hlpasch.2 | ⊢ ( 𝜑  →  𝐵  ∈  𝑃 ) | 
						
							| 7 |  | hlpasch.3 | ⊢ ( 𝜑  →  𝐶  ∈  𝑃 ) | 
						
							| 8 |  | hlpasch.4 | ⊢ ( 𝜑  →  𝑋  ∈  𝑃 ) | 
						
							| 9 |  | hlpasch.5 | ⊢ ( 𝜑  →  𝐷  ∈  𝑃 ) | 
						
							| 10 |  | hlpasch.6 | ⊢ ( 𝜑  →  𝐴  ≠  𝐵 ) | 
						
							| 11 |  | hlpasch.7 | ⊢ ( 𝜑  →  𝐶 ( 𝐾 ‘ 𝐵 ) 𝐷 ) | 
						
							| 12 |  | hlpasch.8 | ⊢ ( 𝜑  →  𝐴  ∈  ( 𝑋 𝐼 𝐶 ) ) | 
						
							| 13 |  | eqid | ⊢ ( LineG ‘ 𝐺 )  =  ( LineG ‘ 𝐺 ) | 
						
							| 14 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝐶  ∈  ( 𝐵 𝐼 𝐷 ) )  →  𝐺  ∈  TarskiG ) | 
						
							| 15 | 9 | adantr | ⊢ ( ( 𝜑  ∧  𝐶  ∈  ( 𝐵 𝐼 𝐷 ) )  →  𝐷  ∈  𝑃 ) | 
						
							| 16 | 8 | adantr | ⊢ ( ( 𝜑  ∧  𝐶  ∈  ( 𝐵 𝐼 𝐷 ) )  →  𝑋  ∈  𝑃 ) | 
						
							| 17 | 7 | adantr | ⊢ ( ( 𝜑  ∧  𝐶  ∈  ( 𝐵 𝐼 𝐷 ) )  →  𝐶  ∈  𝑃 ) | 
						
							| 18 | 6 | adantr | ⊢ ( ( 𝜑  ∧  𝐶  ∈  ( 𝐵 𝐼 𝐷 ) )  →  𝐵  ∈  𝑃 ) | 
						
							| 19 | 5 | adantr | ⊢ ( ( 𝜑  ∧  𝐶  ∈  ( 𝐵 𝐼 𝐷 ) )  →  𝐴  ∈  𝑃 ) | 
						
							| 20 |  | eqid | ⊢ ( dist ‘ 𝐺 )  =  ( dist ‘ 𝐺 ) | 
						
							| 21 |  | simpr | ⊢ ( ( 𝜑  ∧  𝐶  ∈  ( 𝐵 𝐼 𝐷 ) )  →  𝐶  ∈  ( 𝐵 𝐼 𝐷 ) ) | 
						
							| 22 | 1 20 2 14 18 17 15 21 | tgbtwncom | ⊢ ( ( 𝜑  ∧  𝐶  ∈  ( 𝐵 𝐼 𝐷 ) )  →  𝐶  ∈  ( 𝐷 𝐼 𝐵 ) ) | 
						
							| 23 | 12 | adantr | ⊢ ( ( 𝜑  ∧  𝐶  ∈  ( 𝐵 𝐼 𝐷 ) )  →  𝐴  ∈  ( 𝑋 𝐼 𝐶 ) ) | 
						
							| 24 | 1 2 13 14 15 16 17 18 19 22 23 | outpasch | ⊢ ( ( 𝜑  ∧  𝐶  ∈  ( 𝐵 𝐼 𝐷 ) )  →  ∃ 𝑒  ∈  𝑃 ( 𝑒  ∈  ( 𝐷 𝐼 𝑋 )  ∧  𝐴  ∈  ( 𝐵 𝐼 𝑒 ) ) ) | 
						
							| 25 |  | simplr | ⊢ ( ( ( ( 𝜑  ∧  𝐶  ∈  ( 𝐵 𝐼 𝐷 ) )  ∧  𝑒  ∈  𝑃 )  ∧  ( 𝑒  ∈  ( 𝐷 𝐼 𝑋 )  ∧  𝐴  ∈  ( 𝐵 𝐼 𝑒 ) ) )  →  𝑒  ∈  𝑃 ) | 
						
							| 26 | 18 | ad2antrr | ⊢ ( ( ( ( 𝜑  ∧  𝐶  ∈  ( 𝐵 𝐼 𝐷 ) )  ∧  𝑒  ∈  𝑃 )  ∧  ( 𝑒  ∈  ( 𝐷 𝐼 𝑋 )  ∧  𝐴  ∈  ( 𝐵 𝐼 𝑒 ) ) )  →  𝐵  ∈  𝑃 ) | 
						
							| 27 | 19 | ad2antrr | ⊢ ( ( ( ( 𝜑  ∧  𝐶  ∈  ( 𝐵 𝐼 𝐷 ) )  ∧  𝑒  ∈  𝑃 )  ∧  ( 𝑒  ∈  ( 𝐷 𝐼 𝑋 )  ∧  𝐴  ∈  ( 𝐵 𝐼 𝑒 ) ) )  →  𝐴  ∈  𝑃 ) | 
						
							| 28 | 14 | ad2antrr | ⊢ ( ( ( ( 𝜑  ∧  𝐶  ∈  ( 𝐵 𝐼 𝐷 ) )  ∧  𝑒  ∈  𝑃 )  ∧  ( 𝑒  ∈  ( 𝐷 𝐼 𝑋 )  ∧  𝐴  ∈  ( 𝐵 𝐼 𝑒 ) ) )  →  𝐺  ∈  TarskiG ) | 
						
							| 29 |  | simprr | ⊢ ( ( ( ( 𝜑  ∧  𝐶  ∈  ( 𝐵 𝐼 𝐷 ) )  ∧  𝑒  ∈  𝑃 )  ∧  ( 𝑒  ∈  ( 𝐷 𝐼 𝑋 )  ∧  𝐴  ∈  ( 𝐵 𝐼 𝑒 ) ) )  →  𝐴  ∈  ( 𝐵 𝐼 𝑒 ) ) | 
						
							| 30 | 1 20 2 28 26 27 25 29 | tgbtwncom | ⊢ ( ( ( ( 𝜑  ∧  𝐶  ∈  ( 𝐵 𝐼 𝐷 ) )  ∧  𝑒  ∈  𝑃 )  ∧  ( 𝑒  ∈  ( 𝐷 𝐼 𝑋 )  ∧  𝐴  ∈  ( 𝐵 𝐼 𝑒 ) ) )  →  𝐴  ∈  ( 𝑒 𝐼 𝐵 ) ) | 
						
							| 31 | 28 | adantr | ⊢ ( ( ( ( ( 𝜑  ∧  𝐶  ∈  ( 𝐵 𝐼 𝐷 ) )  ∧  𝑒  ∈  𝑃 )  ∧  ( 𝑒  ∈  ( 𝐷 𝐼 𝑋 )  ∧  𝐴  ∈  ( 𝐵 𝐼 𝑒 ) ) )  ∧  𝑒  =  𝐵 )  →  𝐺  ∈  TarskiG ) | 
						
							| 32 | 26 | adantr | ⊢ ( ( ( ( ( 𝜑  ∧  𝐶  ∈  ( 𝐵 𝐼 𝐷 ) )  ∧  𝑒  ∈  𝑃 )  ∧  ( 𝑒  ∈  ( 𝐷 𝐼 𝑋 )  ∧  𝐴  ∈  ( 𝐵 𝐼 𝑒 ) ) )  ∧  𝑒  =  𝐵 )  →  𝐵  ∈  𝑃 ) | 
						
							| 33 | 27 | adantr | ⊢ ( ( ( ( ( 𝜑  ∧  𝐶  ∈  ( 𝐵 𝐼 𝐷 ) )  ∧  𝑒  ∈  𝑃 )  ∧  ( 𝑒  ∈  ( 𝐷 𝐼 𝑋 )  ∧  𝐴  ∈  ( 𝐵 𝐼 𝑒 ) ) )  ∧  𝑒  =  𝐵 )  →  𝐴  ∈  𝑃 ) | 
						
							| 34 |  | simplrr | ⊢ ( ( ( ( ( 𝜑  ∧  𝐶  ∈  ( 𝐵 𝐼 𝐷 ) )  ∧  𝑒  ∈  𝑃 )  ∧  ( 𝑒  ∈  ( 𝐷 𝐼 𝑋 )  ∧  𝐴  ∈  ( 𝐵 𝐼 𝑒 ) ) )  ∧  𝑒  =  𝐵 )  →  𝐴  ∈  ( 𝐵 𝐼 𝑒 ) ) | 
						
							| 35 |  | simpr | ⊢ ( ( ( ( ( 𝜑  ∧  𝐶  ∈  ( 𝐵 𝐼 𝐷 ) )  ∧  𝑒  ∈  𝑃 )  ∧  ( 𝑒  ∈  ( 𝐷 𝐼 𝑋 )  ∧  𝐴  ∈  ( 𝐵 𝐼 𝑒 ) ) )  ∧  𝑒  =  𝐵 )  →  𝑒  =  𝐵 ) | 
						
							| 36 | 35 | oveq2d | ⊢ ( ( ( ( ( 𝜑  ∧  𝐶  ∈  ( 𝐵 𝐼 𝐷 ) )  ∧  𝑒  ∈  𝑃 )  ∧  ( 𝑒  ∈  ( 𝐷 𝐼 𝑋 )  ∧  𝐴  ∈  ( 𝐵 𝐼 𝑒 ) ) )  ∧  𝑒  =  𝐵 )  →  ( 𝐵 𝐼 𝑒 )  =  ( 𝐵 𝐼 𝐵 ) ) | 
						
							| 37 | 34 36 | eleqtrd | ⊢ ( ( ( ( ( 𝜑  ∧  𝐶  ∈  ( 𝐵 𝐼 𝐷 ) )  ∧  𝑒  ∈  𝑃 )  ∧  ( 𝑒  ∈  ( 𝐷 𝐼 𝑋 )  ∧  𝐴  ∈  ( 𝐵 𝐼 𝑒 ) ) )  ∧  𝑒  =  𝐵 )  →  𝐴  ∈  ( 𝐵 𝐼 𝐵 ) ) | 
						
							| 38 | 1 20 2 31 32 33 37 | axtgbtwnid | ⊢ ( ( ( ( ( 𝜑  ∧  𝐶  ∈  ( 𝐵 𝐼 𝐷 ) )  ∧  𝑒  ∈  𝑃 )  ∧  ( 𝑒  ∈  ( 𝐷 𝐼 𝑋 )  ∧  𝐴  ∈  ( 𝐵 𝐼 𝑒 ) ) )  ∧  𝑒  =  𝐵 )  →  𝐵  =  𝐴 ) | 
						
							| 39 | 38 | eqcomd | ⊢ ( ( ( ( ( 𝜑  ∧  𝐶  ∈  ( 𝐵 𝐼 𝐷 ) )  ∧  𝑒  ∈  𝑃 )  ∧  ( 𝑒  ∈  ( 𝐷 𝐼 𝑋 )  ∧  𝐴  ∈  ( 𝐵 𝐼 𝑒 ) ) )  ∧  𝑒  =  𝐵 )  →  𝐴  =  𝐵 ) | 
						
							| 40 | 10 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝐶  ∈  ( 𝐵 𝐼 𝐷 ) )  ∧  𝑒  ∈  𝑃 )  ∧  ( 𝑒  ∈  ( 𝐷 𝐼 𝑋 )  ∧  𝐴  ∈  ( 𝐵 𝐼 𝑒 ) ) )  →  𝐴  ≠  𝐵 ) | 
						
							| 41 | 40 | adantr | ⊢ ( ( ( ( ( 𝜑  ∧  𝐶  ∈  ( 𝐵 𝐼 𝐷 ) )  ∧  𝑒  ∈  𝑃 )  ∧  ( 𝑒  ∈  ( 𝐷 𝐼 𝑋 )  ∧  𝐴  ∈  ( 𝐵 𝐼 𝑒 ) ) )  ∧  𝑒  =  𝐵 )  →  𝐴  ≠  𝐵 ) | 
						
							| 42 | 41 | neneqd | ⊢ ( ( ( ( ( 𝜑  ∧  𝐶  ∈  ( 𝐵 𝐼 𝐷 ) )  ∧  𝑒  ∈  𝑃 )  ∧  ( 𝑒  ∈  ( 𝐷 𝐼 𝑋 )  ∧  𝐴  ∈  ( 𝐵 𝐼 𝑒 ) ) )  ∧  𝑒  =  𝐵 )  →  ¬  𝐴  =  𝐵 ) | 
						
							| 43 | 39 42 | pm2.65da | ⊢ ( ( ( ( 𝜑  ∧  𝐶  ∈  ( 𝐵 𝐼 𝐷 ) )  ∧  𝑒  ∈  𝑃 )  ∧  ( 𝑒  ∈  ( 𝐷 𝐼 𝑋 )  ∧  𝐴  ∈  ( 𝐵 𝐼 𝑒 ) ) )  →  ¬  𝑒  =  𝐵 ) | 
						
							| 44 | 43 | neqned | ⊢ ( ( ( ( 𝜑  ∧  𝐶  ∈  ( 𝐵 𝐼 𝐷 ) )  ∧  𝑒  ∈  𝑃 )  ∧  ( 𝑒  ∈  ( 𝐷 𝐼 𝑋 )  ∧  𝐴  ∈  ( 𝐵 𝐼 𝑒 ) ) )  →  𝑒  ≠  𝐵 ) | 
						
							| 45 | 1 2 3 25 26 27 28 27 30 44 40 | btwnhl2 | ⊢ ( ( ( ( 𝜑  ∧  𝐶  ∈  ( 𝐵 𝐼 𝐷 ) )  ∧  𝑒  ∈  𝑃 )  ∧  ( 𝑒  ∈  ( 𝐷 𝐼 𝑋 )  ∧  𝐴  ∈  ( 𝐵 𝐼 𝑒 ) ) )  →  𝐴 ( 𝐾 ‘ 𝐵 ) 𝑒 ) | 
						
							| 46 | 15 | ad2antrr | ⊢ ( ( ( ( 𝜑  ∧  𝐶  ∈  ( 𝐵 𝐼 𝐷 ) )  ∧  𝑒  ∈  𝑃 )  ∧  ( 𝑒  ∈  ( 𝐷 𝐼 𝑋 )  ∧  𝐴  ∈  ( 𝐵 𝐼 𝑒 ) ) )  →  𝐷  ∈  𝑃 ) | 
						
							| 47 | 16 | ad2antrr | ⊢ ( ( ( ( 𝜑  ∧  𝐶  ∈  ( 𝐵 𝐼 𝐷 ) )  ∧  𝑒  ∈  𝑃 )  ∧  ( 𝑒  ∈  ( 𝐷 𝐼 𝑋 )  ∧  𝐴  ∈  ( 𝐵 𝐼 𝑒 ) ) )  →  𝑋  ∈  𝑃 ) | 
						
							| 48 |  | simprl | ⊢ ( ( ( ( 𝜑  ∧  𝐶  ∈  ( 𝐵 𝐼 𝐷 ) )  ∧  𝑒  ∈  𝑃 )  ∧  ( 𝑒  ∈  ( 𝐷 𝐼 𝑋 )  ∧  𝐴  ∈  ( 𝐵 𝐼 𝑒 ) ) )  →  𝑒  ∈  ( 𝐷 𝐼 𝑋 ) ) | 
						
							| 49 | 1 20 2 28 46 25 47 48 | tgbtwncom | ⊢ ( ( ( ( 𝜑  ∧  𝐶  ∈  ( 𝐵 𝐼 𝐷 ) )  ∧  𝑒  ∈  𝑃 )  ∧  ( 𝑒  ∈  ( 𝐷 𝐼 𝑋 )  ∧  𝐴  ∈  ( 𝐵 𝐼 𝑒 ) ) )  →  𝑒  ∈  ( 𝑋 𝐼 𝐷 ) ) | 
						
							| 50 | 45 49 | jca | ⊢ ( ( ( ( 𝜑  ∧  𝐶  ∈  ( 𝐵 𝐼 𝐷 ) )  ∧  𝑒  ∈  𝑃 )  ∧  ( 𝑒  ∈  ( 𝐷 𝐼 𝑋 )  ∧  𝐴  ∈  ( 𝐵 𝐼 𝑒 ) ) )  →  ( 𝐴 ( 𝐾 ‘ 𝐵 ) 𝑒  ∧  𝑒  ∈  ( 𝑋 𝐼 𝐷 ) ) ) | 
						
							| 51 | 50 | ex | ⊢ ( ( ( 𝜑  ∧  𝐶  ∈  ( 𝐵 𝐼 𝐷 ) )  ∧  𝑒  ∈  𝑃 )  →  ( ( 𝑒  ∈  ( 𝐷 𝐼 𝑋 )  ∧  𝐴  ∈  ( 𝐵 𝐼 𝑒 ) )  →  ( 𝐴 ( 𝐾 ‘ 𝐵 ) 𝑒  ∧  𝑒  ∈  ( 𝑋 𝐼 𝐷 ) ) ) ) | 
						
							| 52 | 51 | reximdva | ⊢ ( ( 𝜑  ∧  𝐶  ∈  ( 𝐵 𝐼 𝐷 ) )  →  ( ∃ 𝑒  ∈  𝑃 ( 𝑒  ∈  ( 𝐷 𝐼 𝑋 )  ∧  𝐴  ∈  ( 𝐵 𝐼 𝑒 ) )  →  ∃ 𝑒  ∈  𝑃 ( 𝐴 ( 𝐾 ‘ 𝐵 ) 𝑒  ∧  𝑒  ∈  ( 𝑋 𝐼 𝐷 ) ) ) ) | 
						
							| 53 | 24 52 | mpd | ⊢ ( ( 𝜑  ∧  𝐶  ∈  ( 𝐵 𝐼 𝐷 ) )  →  ∃ 𝑒  ∈  𝑃 ( 𝐴 ( 𝐾 ‘ 𝐵 ) 𝑒  ∧  𝑒  ∈  ( 𝑋 𝐼 𝐷 ) ) ) | 
						
							| 54 | 9 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝐷  ∈  ( 𝐵 𝐼 𝐶 ) )  ∧  𝑋  ∈  ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) )  →  𝐷  ∈  𝑃 ) | 
						
							| 55 | 54 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝐷  ∈  ( 𝐵 𝐼 𝐶 ) )  ∧  𝑋  ∈  ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) )  ∧  𝑋  =  𝐵 )  →  𝐷  ∈  𝑃 ) | 
						
							| 56 |  | simpr | ⊢ ( ( ( ( ( 𝜑  ∧  𝐷  ∈  ( 𝐵 𝐼 𝐶 ) )  ∧  𝑋  ∈  ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) )  ∧  𝑋  =  𝐵 )  ∧  𝑒  =  𝐷 )  →  𝑒  =  𝐷 ) | 
						
							| 57 | 56 | breq2d | ⊢ ( ( ( ( ( 𝜑  ∧  𝐷  ∈  ( 𝐵 𝐼 𝐶 ) )  ∧  𝑋  ∈  ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) )  ∧  𝑋  =  𝐵 )  ∧  𝑒  =  𝐷 )  →  ( 𝐴 ( 𝐾 ‘ 𝐵 ) 𝑒  ↔  𝐴 ( 𝐾 ‘ 𝐵 ) 𝐷 ) ) | 
						
							| 58 | 56 | eleq1d | ⊢ ( ( ( ( ( 𝜑  ∧  𝐷  ∈  ( 𝐵 𝐼 𝐶 ) )  ∧  𝑋  ∈  ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) )  ∧  𝑋  =  𝐵 )  ∧  𝑒  =  𝐷 )  →  ( 𝑒  ∈  ( 𝑋 𝐼 𝐷 )  ↔  𝐷  ∈  ( 𝑋 𝐼 𝐷 ) ) ) | 
						
							| 59 | 57 58 | anbi12d | ⊢ ( ( ( ( ( 𝜑  ∧  𝐷  ∈  ( 𝐵 𝐼 𝐶 ) )  ∧  𝑋  ∈  ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) )  ∧  𝑋  =  𝐵 )  ∧  𝑒  =  𝐷 )  →  ( ( 𝐴 ( 𝐾 ‘ 𝐵 ) 𝑒  ∧  𝑒  ∈  ( 𝑋 𝐼 𝐷 ) )  ↔  ( 𝐴 ( 𝐾 ‘ 𝐵 ) 𝐷  ∧  𝐷  ∈  ( 𝑋 𝐼 𝐷 ) ) ) ) | 
						
							| 60 | 5 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝐷  ∈  ( 𝐵 𝐼 𝐶 ) )  ∧  𝑋  ∈  ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) )  →  𝐴  ∈  𝑃 ) | 
						
							| 61 | 60 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝐷  ∈  ( 𝐵 𝐼 𝐶 ) )  ∧  𝑋  ∈  ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) )  ∧  𝑋  =  𝐵 )  →  𝐴  ∈  𝑃 ) | 
						
							| 62 | 6 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝐷  ∈  ( 𝐵 𝐼 𝐶 ) )  ∧  𝑋  ∈  ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) )  →  𝐵  ∈  𝑃 ) | 
						
							| 63 | 62 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝐷  ∈  ( 𝐵 𝐼 𝐶 ) )  ∧  𝑋  ∈  ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) )  ∧  𝑋  =  𝐵 )  →  𝐵  ∈  𝑃 ) | 
						
							| 64 | 4 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝐷  ∈  ( 𝐵 𝐼 𝐶 ) )  ∧  𝑋  ∈  ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) )  →  𝐺  ∈  TarskiG ) | 
						
							| 65 | 64 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝐷  ∈  ( 𝐵 𝐼 𝐶 ) )  ∧  𝑋  ∈  ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) )  ∧  𝑋  =  𝐵 )  →  𝐺  ∈  TarskiG ) | 
						
							| 66 | 1 2 3 7 9 6 4 11 | hlcomd | ⊢ ( 𝜑  →  𝐷 ( 𝐾 ‘ 𝐵 ) 𝐶 ) | 
						
							| 67 | 66 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝐷  ∈  ( 𝐵 𝐼 𝐶 ) )  ∧  𝑋  ∈  ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) )  ∧  𝑋  =  𝐵 )  →  𝐷 ( 𝐾 ‘ 𝐵 ) 𝐶 ) | 
						
							| 68 | 7 | adantr | ⊢ ( ( 𝜑  ∧  𝐷  ∈  ( 𝐵 𝐼 𝐶 ) )  →  𝐶  ∈  𝑃 ) | 
						
							| 69 | 68 | ad2antrr | ⊢ ( ( ( ( 𝜑  ∧  𝐷  ∈  ( 𝐵 𝐼 𝐶 ) )  ∧  𝑋  ∈  ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) )  ∧  𝑋  =  𝐵 )  →  𝐶  ∈  𝑃 ) | 
						
							| 70 | 12 | adantr | ⊢ ( ( 𝜑  ∧  𝐷  ∈  ( 𝐵 𝐼 𝐶 ) )  →  𝐴  ∈  ( 𝑋 𝐼 𝐶 ) ) | 
						
							| 71 | 70 | ad2antrr | ⊢ ( ( ( ( 𝜑  ∧  𝐷  ∈  ( 𝐵 𝐼 𝐶 ) )  ∧  𝑋  ∈  ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) )  ∧  𝑋  =  𝐵 )  →  𝐴  ∈  ( 𝑋 𝐼 𝐶 ) ) | 
						
							| 72 |  | simpr | ⊢ ( ( ( ( 𝜑  ∧  𝐷  ∈  ( 𝐵 𝐼 𝐶 ) )  ∧  𝑋  ∈  ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) )  ∧  𝑋  =  𝐵 )  →  𝑋  =  𝐵 ) | 
						
							| 73 | 72 | oveq1d | ⊢ ( ( ( ( 𝜑  ∧  𝐷  ∈  ( 𝐵 𝐼 𝐶 ) )  ∧  𝑋  ∈  ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) )  ∧  𝑋  =  𝐵 )  →  ( 𝑋 𝐼 𝐶 )  =  ( 𝐵 𝐼 𝐶 ) ) | 
						
							| 74 | 71 73 | eleqtrd | ⊢ ( ( ( ( 𝜑  ∧  𝐷  ∈  ( 𝐵 𝐼 𝐶 ) )  ∧  𝑋  ∈  ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) )  ∧  𝑋  =  𝐵 )  →  𝐴  ∈  ( 𝐵 𝐼 𝐶 ) ) | 
						
							| 75 | 1 2 3 7 9 6 4 | ishlg | ⊢ ( 𝜑  →  ( 𝐶 ( 𝐾 ‘ 𝐵 ) 𝐷  ↔  ( 𝐶  ≠  𝐵  ∧  𝐷  ≠  𝐵  ∧  ( 𝐶  ∈  ( 𝐵 𝐼 𝐷 )  ∨  𝐷  ∈  ( 𝐵 𝐼 𝐶 ) ) ) ) ) | 
						
							| 76 | 11 75 | mpbid | ⊢ ( 𝜑  →  ( 𝐶  ≠  𝐵  ∧  𝐷  ≠  𝐵  ∧  ( 𝐶  ∈  ( 𝐵 𝐼 𝐷 )  ∨  𝐷  ∈  ( 𝐵 𝐼 𝐶 ) ) ) ) | 
						
							| 77 | 76 | simp1d | ⊢ ( 𝜑  →  𝐶  ≠  𝐵 ) | 
						
							| 78 | 77 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝐷  ∈  ( 𝐵 𝐼 𝐶 ) )  ∧  𝑋  ∈  ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) )  ∧  𝑋  =  𝐵 )  →  𝐶  ≠  𝐵 ) | 
						
							| 79 | 10 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝐷  ∈  ( 𝐵 𝐼 𝐶 ) )  ∧  𝑋  ∈  ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) )  →  𝐴  ≠  𝐵 ) | 
						
							| 80 | 79 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝐷  ∈  ( 𝐵 𝐼 𝐶 ) )  ∧  𝑋  ∈  ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) )  ∧  𝑋  =  𝐵 )  →  𝐴  ≠  𝐵 ) | 
						
							| 81 | 1 2 3 55 69 63 65 61 74 78 80 | hlbtwn | ⊢ ( ( ( ( 𝜑  ∧  𝐷  ∈  ( 𝐵 𝐼 𝐶 ) )  ∧  𝑋  ∈  ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) )  ∧  𝑋  =  𝐵 )  →  ( 𝐷 ( 𝐾 ‘ 𝐵 ) 𝐶  ↔  𝐷 ( 𝐾 ‘ 𝐵 ) 𝐴 ) ) | 
						
							| 82 | 67 81 | mpbid | ⊢ ( ( ( ( 𝜑  ∧  𝐷  ∈  ( 𝐵 𝐼 𝐶 ) )  ∧  𝑋  ∈  ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) )  ∧  𝑋  =  𝐵 )  →  𝐷 ( 𝐾 ‘ 𝐵 ) 𝐴 ) | 
						
							| 83 | 1 2 3 55 61 63 65 82 | hlcomd | ⊢ ( ( ( ( 𝜑  ∧  𝐷  ∈  ( 𝐵 𝐼 𝐶 ) )  ∧  𝑋  ∈  ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) )  ∧  𝑋  =  𝐵 )  →  𝐴 ( 𝐾 ‘ 𝐵 ) 𝐷 ) | 
						
							| 84 | 8 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝐷  ∈  ( 𝐵 𝐼 𝐶 ) )  ∧  𝑋  ∈  ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) )  →  𝑋  ∈  𝑃 ) | 
						
							| 85 | 84 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝐷  ∈  ( 𝐵 𝐼 𝐶 ) )  ∧  𝑋  ∈  ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) )  ∧  𝑋  =  𝐵 )  →  𝑋  ∈  𝑃 ) | 
						
							| 86 | 1 20 2 65 85 55 | tgbtwntriv2 | ⊢ ( ( ( ( 𝜑  ∧  𝐷  ∈  ( 𝐵 𝐼 𝐶 ) )  ∧  𝑋  ∈  ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) )  ∧  𝑋  =  𝐵 )  →  𝐷  ∈  ( 𝑋 𝐼 𝐷 ) ) | 
						
							| 87 | 83 86 | jca | ⊢ ( ( ( ( 𝜑  ∧  𝐷  ∈  ( 𝐵 𝐼 𝐶 ) )  ∧  𝑋  ∈  ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) )  ∧  𝑋  =  𝐵 )  →  ( 𝐴 ( 𝐾 ‘ 𝐵 ) 𝐷  ∧  𝐷  ∈  ( 𝑋 𝐼 𝐷 ) ) ) | 
						
							| 88 | 55 59 87 | rspcedvd | ⊢ ( ( ( ( 𝜑  ∧  𝐷  ∈  ( 𝐵 𝐼 𝐶 ) )  ∧  𝑋  ∈  ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) )  ∧  𝑋  =  𝐵 )  →  ∃ 𝑒  ∈  𝑃 ( 𝐴 ( 𝐾 ‘ 𝐵 ) 𝑒  ∧  𝑒  ∈  ( 𝑋 𝐼 𝐷 ) ) ) | 
						
							| 89 | 84 | ad2antrr | ⊢ ( ( ( ( ( 𝜑  ∧  𝐷  ∈  ( 𝐵 𝐼 𝐶 ) )  ∧  𝑋  ∈  ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) )  ∧  𝑋  ≠  𝐵 )  ∧  𝐴 ( 𝐾 ‘ 𝐵 ) 𝑋 )  →  𝑋  ∈  𝑃 ) | 
						
							| 90 |  | simpr | ⊢ ( ( ( ( 𝜑  ∧  𝐷  ∈  ( 𝐵 𝐼 𝐶 ) )  ∧  𝑋  ∈  ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) )  ∧  𝑒  =  𝑋 )  →  𝑒  =  𝑋 ) | 
						
							| 91 | 90 | breq2d | ⊢ ( ( ( ( 𝜑  ∧  𝐷  ∈  ( 𝐵 𝐼 𝐶 ) )  ∧  𝑋  ∈  ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) )  ∧  𝑒  =  𝑋 )  →  ( 𝐴 ( 𝐾 ‘ 𝐵 ) 𝑒  ↔  𝐴 ( 𝐾 ‘ 𝐵 ) 𝑋 ) ) | 
						
							| 92 | 90 | eleq1d | ⊢ ( ( ( ( 𝜑  ∧  𝐷  ∈  ( 𝐵 𝐼 𝐶 ) )  ∧  𝑋  ∈  ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) )  ∧  𝑒  =  𝑋 )  →  ( 𝑒  ∈  ( 𝑋 𝐼 𝐷 )  ↔  𝑋  ∈  ( 𝑋 𝐼 𝐷 ) ) ) | 
						
							| 93 | 91 92 | anbi12d | ⊢ ( ( ( ( 𝜑  ∧  𝐷  ∈  ( 𝐵 𝐼 𝐶 ) )  ∧  𝑋  ∈  ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) )  ∧  𝑒  =  𝑋 )  →  ( ( 𝐴 ( 𝐾 ‘ 𝐵 ) 𝑒  ∧  𝑒  ∈  ( 𝑋 𝐼 𝐷 ) )  ↔  ( 𝐴 ( 𝐾 ‘ 𝐵 ) 𝑋  ∧  𝑋  ∈  ( 𝑋 𝐼 𝐷 ) ) ) ) | 
						
							| 94 | 93 | ad4ant14 | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝐷  ∈  ( 𝐵 𝐼 𝐶 ) )  ∧  𝑋  ∈  ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) )  ∧  𝑋  ≠  𝐵 )  ∧  𝐴 ( 𝐾 ‘ 𝐵 ) 𝑋 )  ∧  𝑒  =  𝑋 )  →  ( ( 𝐴 ( 𝐾 ‘ 𝐵 ) 𝑒  ∧  𝑒  ∈  ( 𝑋 𝐼 𝐷 ) )  ↔  ( 𝐴 ( 𝐾 ‘ 𝐵 ) 𝑋  ∧  𝑋  ∈  ( 𝑋 𝐼 𝐷 ) ) ) ) | 
						
							| 95 |  | simpr | ⊢ ( ( ( ( ( 𝜑  ∧  𝐷  ∈  ( 𝐵 𝐼 𝐶 ) )  ∧  𝑋  ∈  ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) )  ∧  𝑋  ≠  𝐵 )  ∧  𝐴 ( 𝐾 ‘ 𝐵 ) 𝑋 )  →  𝐴 ( 𝐾 ‘ 𝐵 ) 𝑋 ) | 
						
							| 96 | 1 20 2 64 84 54 | tgbtwntriv1 | ⊢ ( ( ( 𝜑  ∧  𝐷  ∈  ( 𝐵 𝐼 𝐶 ) )  ∧  𝑋  ∈  ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) )  →  𝑋  ∈  ( 𝑋 𝐼 𝐷 ) ) | 
						
							| 97 | 96 | ad2antrr | ⊢ ( ( ( ( ( 𝜑  ∧  𝐷  ∈  ( 𝐵 𝐼 𝐶 ) )  ∧  𝑋  ∈  ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) )  ∧  𝑋  ≠  𝐵 )  ∧  𝐴 ( 𝐾 ‘ 𝐵 ) 𝑋 )  →  𝑋  ∈  ( 𝑋 𝐼 𝐷 ) ) | 
						
							| 98 | 95 97 | jca | ⊢ ( ( ( ( ( 𝜑  ∧  𝐷  ∈  ( 𝐵 𝐼 𝐶 ) )  ∧  𝑋  ∈  ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) )  ∧  𝑋  ≠  𝐵 )  ∧  𝐴 ( 𝐾 ‘ 𝐵 ) 𝑋 )  →  ( 𝐴 ( 𝐾 ‘ 𝐵 ) 𝑋  ∧  𝑋  ∈  ( 𝑋 𝐼 𝐷 ) ) ) | 
						
							| 99 | 89 94 98 | rspcedvd | ⊢ ( ( ( ( ( 𝜑  ∧  𝐷  ∈  ( 𝐵 𝐼 𝐶 ) )  ∧  𝑋  ∈  ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) )  ∧  𝑋  ≠  𝐵 )  ∧  𝐴 ( 𝐾 ‘ 𝐵 ) 𝑋 )  →  ∃ 𝑒  ∈  𝑃 ( 𝐴 ( 𝐾 ‘ 𝐵 ) 𝑒  ∧  𝑒  ∈  ( 𝑋 𝐼 𝐷 ) ) ) | 
						
							| 100 | 54 | ad2antrr | ⊢ ( ( ( ( ( 𝜑  ∧  𝐷  ∈  ( 𝐵 𝐼 𝐶 ) )  ∧  𝑋  ∈  ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) )  ∧  𝑋  ≠  𝐵 )  ∧  𝐵  ∈  ( 𝑋 𝐼 𝐴 ) )  →  𝐷  ∈  𝑃 ) | 
						
							| 101 |  | simpr | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝐷  ∈  ( 𝐵 𝐼 𝐶 ) )  ∧  𝑋  ∈  ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) )  ∧  𝑋  ≠  𝐵 )  ∧  𝐵  ∈  ( 𝑋 𝐼 𝐴 ) )  ∧  𝑒  =  𝐷 )  →  𝑒  =  𝐷 ) | 
						
							| 102 | 101 | breq2d | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝐷  ∈  ( 𝐵 𝐼 𝐶 ) )  ∧  𝑋  ∈  ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) )  ∧  𝑋  ≠  𝐵 )  ∧  𝐵  ∈  ( 𝑋 𝐼 𝐴 ) )  ∧  𝑒  =  𝐷 )  →  ( 𝐴 ( 𝐾 ‘ 𝐵 ) 𝑒  ↔  𝐴 ( 𝐾 ‘ 𝐵 ) 𝐷 ) ) | 
						
							| 103 | 101 | eleq1d | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝐷  ∈  ( 𝐵 𝐼 𝐶 ) )  ∧  𝑋  ∈  ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) )  ∧  𝑋  ≠  𝐵 )  ∧  𝐵  ∈  ( 𝑋 𝐼 𝐴 ) )  ∧  𝑒  =  𝐷 )  →  ( 𝑒  ∈  ( 𝑋 𝐼 𝐷 )  ↔  𝐷  ∈  ( 𝑋 𝐼 𝐷 ) ) ) | 
						
							| 104 | 102 103 | anbi12d | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝐷  ∈  ( 𝐵 𝐼 𝐶 ) )  ∧  𝑋  ∈  ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) )  ∧  𝑋  ≠  𝐵 )  ∧  𝐵  ∈  ( 𝑋 𝐼 𝐴 ) )  ∧  𝑒  =  𝐷 )  →  ( ( 𝐴 ( 𝐾 ‘ 𝐵 ) 𝑒  ∧  𝑒  ∈  ( 𝑋 𝐼 𝐷 ) )  ↔  ( 𝐴 ( 𝐾 ‘ 𝐵 ) 𝐷  ∧  𝐷  ∈  ( 𝑋 𝐼 𝐷 ) ) ) ) | 
						
							| 105 | 79 | ad2antrr | ⊢ ( ( ( ( ( 𝜑  ∧  𝐷  ∈  ( 𝐵 𝐼 𝐶 ) )  ∧  𝑋  ∈  ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) )  ∧  𝑋  ≠  𝐵 )  ∧  𝐵  ∈  ( 𝑋 𝐼 𝐴 ) )  →  𝐴  ≠  𝐵 ) | 
						
							| 106 | 1 2 3 7 9 6 4 11 | hlne2 | ⊢ ( 𝜑  →  𝐷  ≠  𝐵 ) | 
						
							| 107 | 106 | ad4antr | ⊢ ( ( ( ( ( 𝜑  ∧  𝐷  ∈  ( 𝐵 𝐼 𝐶 ) )  ∧  𝑋  ∈  ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) )  ∧  𝑋  ≠  𝐵 )  ∧  𝐵  ∈  ( 𝑋 𝐼 𝐴 ) )  →  𝐷  ≠  𝐵 ) | 
						
							| 108 | 64 | ad2antrr | ⊢ ( ( ( ( ( 𝜑  ∧  𝐷  ∈  ( 𝐵 𝐼 𝐶 ) )  ∧  𝑋  ∈  ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) )  ∧  𝑋  ≠  𝐵 )  ∧  𝐵  ∈  ( 𝑋 𝐼 𝐴 ) )  →  𝐺  ∈  TarskiG ) | 
						
							| 109 | 62 | ad2antrr | ⊢ ( ( ( ( ( 𝜑  ∧  𝐷  ∈  ( 𝐵 𝐼 𝐶 ) )  ∧  𝑋  ∈  ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) )  ∧  𝑋  ≠  𝐵 )  ∧  𝐵  ∈  ( 𝑋 𝐼 𝐴 ) )  →  𝐵  ∈  𝑃 ) | 
						
							| 110 | 60 | ad2antrr | ⊢ ( ( ( ( ( 𝜑  ∧  𝐷  ∈  ( 𝐵 𝐼 𝐶 ) )  ∧  𝑋  ∈  ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) )  ∧  𝑋  ≠  𝐵 )  ∧  𝐵  ∈  ( 𝑋 𝐼 𝐴 ) )  →  𝐴  ∈  𝑃 ) | 
						
							| 111 | 68 | ad2antrr | ⊢ ( ( ( ( 𝜑  ∧  𝐷  ∈  ( 𝐵 𝐼 𝐶 ) )  ∧  𝑋  ∈  ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) )  ∧  𝑋  ≠  𝐵 )  →  𝐶  ∈  𝑃 ) | 
						
							| 112 | 111 | adantr | ⊢ ( ( ( ( ( 𝜑  ∧  𝐷  ∈  ( 𝐵 𝐼 𝐶 ) )  ∧  𝑋  ∈  ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) )  ∧  𝑋  ≠  𝐵 )  ∧  𝐵  ∈  ( 𝑋 𝐼 𝐴 ) )  →  𝐶  ∈  𝑃 ) | 
						
							| 113 | 84 | ad2antrr | ⊢ ( ( ( ( ( 𝜑  ∧  𝐷  ∈  ( 𝐵 𝐼 𝐶 ) )  ∧  𝑋  ∈  ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) )  ∧  𝑋  ≠  𝐵 )  ∧  𝐵  ∈  ( 𝑋 𝐼 𝐴 ) )  →  𝑋  ∈  𝑃 ) | 
						
							| 114 |  | simpr | ⊢ ( ( ( ( ( 𝜑  ∧  𝐷  ∈  ( 𝐵 𝐼 𝐶 ) )  ∧  𝑋  ∈  ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) )  ∧  𝑋  ≠  𝐵 )  ∧  𝐵  ∈  ( 𝑋 𝐼 𝐴 ) )  →  𝐵  ∈  ( 𝑋 𝐼 𝐴 ) ) | 
						
							| 115 | 70 | ad2antrr | ⊢ ( ( ( ( 𝜑  ∧  𝐷  ∈  ( 𝐵 𝐼 𝐶 ) )  ∧  𝑋  ∈  ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) )  ∧  𝑋  ≠  𝐵 )  →  𝐴  ∈  ( 𝑋 𝐼 𝐶 ) ) | 
						
							| 116 | 115 | adantr | ⊢ ( ( ( ( ( 𝜑  ∧  𝐷  ∈  ( 𝐵 𝐼 𝐶 ) )  ∧  𝑋  ∈  ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) )  ∧  𝑋  ≠  𝐵 )  ∧  𝐵  ∈  ( 𝑋 𝐼 𝐴 ) )  →  𝐴  ∈  ( 𝑋 𝐼 𝐶 ) ) | 
						
							| 117 | 1 20 2 108 113 109 110 112 114 116 | tgbtwnexch3 | ⊢ ( ( ( ( ( 𝜑  ∧  𝐷  ∈  ( 𝐵 𝐼 𝐶 ) )  ∧  𝑋  ∈  ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) )  ∧  𝑋  ≠  𝐵 )  ∧  𝐵  ∈  ( 𝑋 𝐼 𝐴 ) )  →  𝐴  ∈  ( 𝐵 𝐼 𝐶 ) ) | 
						
							| 118 |  | simp-4r | ⊢ ( ( ( ( ( 𝜑  ∧  𝐷  ∈  ( 𝐵 𝐼 𝐶 ) )  ∧  𝑋  ∈  ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) )  ∧  𝑋  ≠  𝐵 )  ∧  𝐵  ∈  ( 𝑋 𝐼 𝐴 ) )  →  𝐷  ∈  ( 𝐵 𝐼 𝐶 ) ) | 
						
							| 119 | 1 2 108 109 110 100 112 117 118 | tgbtwnconn3 | ⊢ ( ( ( ( ( 𝜑  ∧  𝐷  ∈  ( 𝐵 𝐼 𝐶 ) )  ∧  𝑋  ∈  ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) )  ∧  𝑋  ≠  𝐵 )  ∧  𝐵  ∈  ( 𝑋 𝐼 𝐴 ) )  →  ( 𝐴  ∈  ( 𝐵 𝐼 𝐷 )  ∨  𝐷  ∈  ( 𝐵 𝐼 𝐴 ) ) ) | 
						
							| 120 | 1 2 3 5 9 6 4 | ishlg | ⊢ ( 𝜑  →  ( 𝐴 ( 𝐾 ‘ 𝐵 ) 𝐷  ↔  ( 𝐴  ≠  𝐵  ∧  𝐷  ≠  𝐵  ∧  ( 𝐴  ∈  ( 𝐵 𝐼 𝐷 )  ∨  𝐷  ∈  ( 𝐵 𝐼 𝐴 ) ) ) ) ) | 
						
							| 121 | 120 | ad4antr | ⊢ ( ( ( ( ( 𝜑  ∧  𝐷  ∈  ( 𝐵 𝐼 𝐶 ) )  ∧  𝑋  ∈  ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) )  ∧  𝑋  ≠  𝐵 )  ∧  𝐵  ∈  ( 𝑋 𝐼 𝐴 ) )  →  ( 𝐴 ( 𝐾 ‘ 𝐵 ) 𝐷  ↔  ( 𝐴  ≠  𝐵  ∧  𝐷  ≠  𝐵  ∧  ( 𝐴  ∈  ( 𝐵 𝐼 𝐷 )  ∨  𝐷  ∈  ( 𝐵 𝐼 𝐴 ) ) ) ) ) | 
						
							| 122 | 105 107 119 121 | mpbir3and | ⊢ ( ( ( ( ( 𝜑  ∧  𝐷  ∈  ( 𝐵 𝐼 𝐶 ) )  ∧  𝑋  ∈  ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) )  ∧  𝑋  ≠  𝐵 )  ∧  𝐵  ∈  ( 𝑋 𝐼 𝐴 ) )  →  𝐴 ( 𝐾 ‘ 𝐵 ) 𝐷 ) | 
						
							| 123 | 1 20 2 108 113 100 | tgbtwntriv2 | ⊢ ( ( ( ( ( 𝜑  ∧  𝐷  ∈  ( 𝐵 𝐼 𝐶 ) )  ∧  𝑋  ∈  ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) )  ∧  𝑋  ≠  𝐵 )  ∧  𝐵  ∈  ( 𝑋 𝐼 𝐴 ) )  →  𝐷  ∈  ( 𝑋 𝐼 𝐷 ) ) | 
						
							| 124 | 122 123 | jca | ⊢ ( ( ( ( ( 𝜑  ∧  𝐷  ∈  ( 𝐵 𝐼 𝐶 ) )  ∧  𝑋  ∈  ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) )  ∧  𝑋  ≠  𝐵 )  ∧  𝐵  ∈  ( 𝑋 𝐼 𝐴 ) )  →  ( 𝐴 ( 𝐾 ‘ 𝐵 ) 𝐷  ∧  𝐷  ∈  ( 𝑋 𝐼 𝐷 ) ) ) | 
						
							| 125 | 100 104 124 | rspcedvd | ⊢ ( ( ( ( ( 𝜑  ∧  𝐷  ∈  ( 𝐵 𝐼 𝐶 ) )  ∧  𝑋  ∈  ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) )  ∧  𝑋  ≠  𝐵 )  ∧  𝐵  ∈  ( 𝑋 𝐼 𝐴 ) )  →  ∃ 𝑒  ∈  𝑃 ( 𝐴 ( 𝐾 ‘ 𝐵 ) 𝑒  ∧  𝑒  ∈  ( 𝑋 𝐼 𝐷 ) ) ) | 
						
							| 126 | 8 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝐷  ∈  ( 𝐵 𝐼 𝐶 ) )  ∧  𝑋  ∈  ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) )  ∧  𝑋  ≠  𝐵 )  →  𝑋  ∈  𝑃 ) | 
						
							| 127 | 6 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝐷  ∈  ( 𝐵 𝐼 𝐶 ) )  ∧  𝑋  ∈  ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) )  ∧  𝑋  ≠  𝐵 )  →  𝐵  ∈  𝑃 ) | 
						
							| 128 | 5 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝐷  ∈  ( 𝐵 𝐼 𝐶 ) )  ∧  𝑋  ∈  ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) )  ∧  𝑋  ≠  𝐵 )  →  𝐴  ∈  𝑃 ) | 
						
							| 129 | 4 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝐷  ∈  ( 𝐵 𝐼 𝐶 ) )  ∧  𝑋  ∈  ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) )  ∧  𝑋  ≠  𝐵 )  →  𝐺  ∈  TarskiG ) | 
						
							| 130 |  | simpr | ⊢ ( ( ( ( 𝜑  ∧  𝐷  ∈  ( 𝐵 𝐼 𝐶 ) )  ∧  𝑋  ∈  ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) )  ∧  𝑋  ≠  𝐵 )  →  𝑋  ≠  𝐵 ) | 
						
							| 131 | 130 | neneqd | ⊢ ( ( ( ( 𝜑  ∧  𝐷  ∈  ( 𝐵 𝐼 𝐶 ) )  ∧  𝑋  ∈  ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) )  ∧  𝑋  ≠  𝐵 )  →  ¬  𝑋  =  𝐵 ) | 
						
							| 132 | 64 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝐷  ∈  ( 𝐵 𝐼 𝐶 ) )  ∧  𝑋  ∈  ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) )  ∧  𝑋  ≠  𝐵 )  →  𝐺  ∈  TarskiG ) | 
						
							| 133 | 132 | adantr | ⊢ ( ( ( ( ( 𝜑  ∧  𝐷  ∈  ( 𝐵 𝐼 𝐶 ) )  ∧  𝑋  ∈  ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) )  ∧  𝑋  ≠  𝐵 )  ∧  𝑋  =  𝐶 )  →  𝐺  ∈  TarskiG ) | 
						
							| 134 | 126 | adantr | ⊢ ( ( ( ( ( 𝜑  ∧  𝐷  ∈  ( 𝐵 𝐼 𝐶 ) )  ∧  𝑋  ∈  ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) )  ∧  𝑋  ≠  𝐵 )  ∧  𝑋  =  𝐶 )  →  𝑋  ∈  𝑃 ) | 
						
							| 135 | 128 | adantr | ⊢ ( ( ( ( ( 𝜑  ∧  𝐷  ∈  ( 𝐵 𝐼 𝐶 ) )  ∧  𝑋  ∈  ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) )  ∧  𝑋  ≠  𝐵 )  ∧  𝑋  =  𝐶 )  →  𝐴  ∈  𝑃 ) | 
						
							| 136 | 115 | adantr | ⊢ ( ( ( ( ( 𝜑  ∧  𝐷  ∈  ( 𝐵 𝐼 𝐶 ) )  ∧  𝑋  ∈  ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) )  ∧  𝑋  ≠  𝐵 )  ∧  𝑋  =  𝐶 )  →  𝐴  ∈  ( 𝑋 𝐼 𝐶 ) ) | 
						
							| 137 |  | simpr | ⊢ ( ( ( ( ( 𝜑  ∧  𝐷  ∈  ( 𝐵 𝐼 𝐶 ) )  ∧  𝑋  ∈  ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) )  ∧  𝑋  ≠  𝐵 )  ∧  𝑋  =  𝐶 )  →  𝑋  =  𝐶 ) | 
						
							| 138 | 137 | oveq2d | ⊢ ( ( ( ( ( 𝜑  ∧  𝐷  ∈  ( 𝐵 𝐼 𝐶 ) )  ∧  𝑋  ∈  ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) )  ∧  𝑋  ≠  𝐵 )  ∧  𝑋  =  𝐶 )  →  ( 𝑋 𝐼 𝑋 )  =  ( 𝑋 𝐼 𝐶 ) ) | 
						
							| 139 | 136 138 | eleqtrrd | ⊢ ( ( ( ( ( 𝜑  ∧  𝐷  ∈  ( 𝐵 𝐼 𝐶 ) )  ∧  𝑋  ∈  ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) )  ∧  𝑋  ≠  𝐵 )  ∧  𝑋  =  𝐶 )  →  𝐴  ∈  ( 𝑋 𝐼 𝑋 ) ) | 
						
							| 140 | 1 20 2 133 134 135 139 | axtgbtwnid | ⊢ ( ( ( ( ( 𝜑  ∧  𝐷  ∈  ( 𝐵 𝐼 𝐶 ) )  ∧  𝑋  ∈  ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) )  ∧  𝑋  ≠  𝐵 )  ∧  𝑋  =  𝐶 )  →  𝑋  =  𝐴 ) | 
						
							| 141 | 140 | olcd | ⊢ ( ( ( ( ( 𝜑  ∧  𝐷  ∈  ( 𝐵 𝐼 𝐶 ) )  ∧  𝑋  ∈  ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) )  ∧  𝑋  ≠  𝐵 )  ∧  𝑋  =  𝐶 )  →  ( 𝐵  ∈  ( 𝑋 ( LineG ‘ 𝐺 ) 𝐴 )  ∨  𝑋  =  𝐴 ) ) | 
						
							| 142 | 132 | adantr | ⊢ ( ( ( ( ( 𝜑  ∧  𝐷  ∈  ( 𝐵 𝐼 𝐶 ) )  ∧  𝑋  ∈  ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) )  ∧  𝑋  ≠  𝐵 )  ∧  𝑋  ≠  𝐶 )  →  𝐺  ∈  TarskiG ) | 
						
							| 143 | 127 | adantr | ⊢ ( ( ( ( ( 𝜑  ∧  𝐷  ∈  ( 𝐵 𝐼 𝐶 ) )  ∧  𝑋  ∈  ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) )  ∧  𝑋  ≠  𝐵 )  ∧  𝑋  ≠  𝐶 )  →  𝐵  ∈  𝑃 ) | 
						
							| 144 | 111 | adantr | ⊢ ( ( ( ( ( 𝜑  ∧  𝐷  ∈  ( 𝐵 𝐼 𝐶 ) )  ∧  𝑋  ∈  ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) )  ∧  𝑋  ≠  𝐵 )  ∧  𝑋  ≠  𝐶 )  →  𝐶  ∈  𝑃 ) | 
						
							| 145 | 126 | adantr | ⊢ ( ( ( ( ( 𝜑  ∧  𝐷  ∈  ( 𝐵 𝐼 𝐶 ) )  ∧  𝑋  ∈  ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) )  ∧  𝑋  ≠  𝐵 )  ∧  𝑋  ≠  𝐶 )  →  𝑋  ∈  𝑃 ) | 
						
							| 146 | 128 | adantr | ⊢ ( ( ( ( ( 𝜑  ∧  𝐷  ∈  ( 𝐵 𝐼 𝐶 ) )  ∧  𝑋  ∈  ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) )  ∧  𝑋  ≠  𝐵 )  ∧  𝑋  ≠  𝐶 )  →  𝐴  ∈  𝑃 ) | 
						
							| 147 |  | simpr | ⊢ ( ( ( ( ( 𝜑  ∧  𝐷  ∈  ( 𝐵 𝐼 𝐶 ) )  ∧  𝑋  ∈  ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) )  ∧  𝑋  ≠  𝐵 )  ∧  𝑋  ≠  𝐶 )  →  𝑋  ≠  𝐶 ) | 
						
							| 148 | 147 | necomd | ⊢ ( ( ( ( ( 𝜑  ∧  𝐷  ∈  ( 𝐵 𝐼 𝐶 ) )  ∧  𝑋  ∈  ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) )  ∧  𝑋  ≠  𝐵 )  ∧  𝑋  ≠  𝐶 )  →  𝐶  ≠  𝑋 ) | 
						
							| 149 | 148 | neneqd | ⊢ ( ( ( ( ( 𝜑  ∧  𝐷  ∈  ( 𝐵 𝐼 𝐶 ) )  ∧  𝑋  ∈  ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) )  ∧  𝑋  ≠  𝐵 )  ∧  𝑋  ≠  𝐶 )  →  ¬  𝐶  =  𝑋 ) | 
						
							| 150 | 54 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝐷  ∈  ( 𝐵 𝐼 𝐶 ) )  ∧  𝑋  ∈  ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) )  ∧  𝑋  ≠  𝐵 )  →  𝐷  ∈  𝑃 ) | 
						
							| 151 | 106 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝐷  ∈  ( 𝐵 𝐼 𝐶 ) )  ∧  𝑋  ∈  ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) )  ∧  𝑋  ≠  𝐵 )  →  𝐷  ≠  𝐵 ) | 
						
							| 152 |  | simplr | ⊢ ( ( ( ( 𝜑  ∧  𝐷  ∈  ( 𝐵 𝐼 𝐶 ) )  ∧  𝑋  ∈  ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) )  ∧  𝑋  ≠  𝐵 )  →  𝑋  ∈  ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) ) | 
						
							| 153 | 1 2 13 132 150 127 126 151 152 | lncom | ⊢ ( ( ( ( 𝜑  ∧  𝐷  ∈  ( 𝐵 𝐼 𝐶 ) )  ∧  𝑋  ∈  ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) )  ∧  𝑋  ≠  𝐵 )  →  𝑋  ∈  ( 𝐷 ( LineG ‘ 𝐺 ) 𝐵 ) ) | 
						
							| 154 | 77 | necomd | ⊢ ( 𝜑  →  𝐵  ≠  𝐶 ) | 
						
							| 155 | 154 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝐷  ∈  ( 𝐵 𝐼 𝐶 ) )  ∧  𝑋  ∈  ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) )  ∧  𝑋  ≠  𝐵 )  →  𝐵  ≠  𝐶 ) | 
						
							| 156 | 66 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝐷  ∈  ( 𝐵 𝐼 𝐶 ) )  ∧  𝑋  ∈  ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) )  ∧  𝑋  ≠  𝐵 )  →  𝐷 ( 𝐾 ‘ 𝐵 ) 𝐶 ) | 
						
							| 157 | 1 2 3 150 111 127 132 13 156 | hlln | ⊢ ( ( ( ( 𝜑  ∧  𝐷  ∈  ( 𝐵 𝐼 𝐶 ) )  ∧  𝑋  ∈  ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) )  ∧  𝑋  ≠  𝐵 )  →  𝐷  ∈  ( 𝐶 ( LineG ‘ 𝐺 ) 𝐵 ) ) | 
						
							| 158 | 1 2 13 132 127 111 150 155 157 | lncom | ⊢ ( ( ( ( 𝜑  ∧  𝐷  ∈  ( 𝐵 𝐼 𝐶 ) )  ∧  𝑋  ∈  ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) )  ∧  𝑋  ≠  𝐵 )  →  𝐷  ∈  ( 𝐵 ( LineG ‘ 𝐺 ) 𝐶 ) ) | 
						
							| 159 | 158 | orcd | ⊢ ( ( ( ( 𝜑  ∧  𝐷  ∈  ( 𝐵 𝐼 𝐶 ) )  ∧  𝑋  ∈  ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) )  ∧  𝑋  ≠  𝐵 )  →  ( 𝐷  ∈  ( 𝐵 ( LineG ‘ 𝐺 ) 𝐶 )  ∨  𝐵  =  𝐶 ) ) | 
						
							| 160 | 1 2 13 132 126 150 127 111 153 159 | coltr | ⊢ ( ( ( ( 𝜑  ∧  𝐷  ∈  ( 𝐵 𝐼 𝐶 ) )  ∧  𝑋  ∈  ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) )  ∧  𝑋  ≠  𝐵 )  →  ( 𝑋  ∈  ( 𝐵 ( LineG ‘ 𝐺 ) 𝐶 )  ∨  𝐵  =  𝐶 ) ) | 
						
							| 161 | 1 13 2 132 127 111 126 160 | colrot1 | ⊢ ( ( ( ( 𝜑  ∧  𝐷  ∈  ( 𝐵 𝐼 𝐶 ) )  ∧  𝑋  ∈  ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) )  ∧  𝑋  ≠  𝐵 )  →  ( 𝐵  ∈  ( 𝐶 ( LineG ‘ 𝐺 ) 𝑋 )  ∨  𝐶  =  𝑋 ) ) | 
						
							| 162 | 161 | orcomd | ⊢ ( ( ( ( 𝜑  ∧  𝐷  ∈  ( 𝐵 𝐼 𝐶 ) )  ∧  𝑋  ∈  ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) )  ∧  𝑋  ≠  𝐵 )  →  ( 𝐶  =  𝑋  ∨  𝐵  ∈  ( 𝐶 ( LineG ‘ 𝐺 ) 𝑋 ) ) ) | 
						
							| 163 | 162 | adantr | ⊢ ( ( ( ( ( 𝜑  ∧  𝐷  ∈  ( 𝐵 𝐼 𝐶 ) )  ∧  𝑋  ∈  ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) )  ∧  𝑋  ≠  𝐵 )  ∧  𝑋  ≠  𝐶 )  →  ( 𝐶  =  𝑋  ∨  𝐵  ∈  ( 𝐶 ( LineG ‘ 𝐺 ) 𝑋 ) ) ) | 
						
							| 164 | 163 | ord | ⊢ ( ( ( ( ( 𝜑  ∧  𝐷  ∈  ( 𝐵 𝐼 𝐶 ) )  ∧  𝑋  ∈  ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) )  ∧  𝑋  ≠  𝐵 )  ∧  𝑋  ≠  𝐶 )  →  ( ¬  𝐶  =  𝑋  →  𝐵  ∈  ( 𝐶 ( LineG ‘ 𝐺 ) 𝑋 ) ) ) | 
						
							| 165 | 149 164 | mpd | ⊢ ( ( ( ( ( 𝜑  ∧  𝐷  ∈  ( 𝐵 𝐼 𝐶 ) )  ∧  𝑋  ∈  ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) )  ∧  𝑋  ≠  𝐵 )  ∧  𝑋  ≠  𝐶 )  →  𝐵  ∈  ( 𝐶 ( LineG ‘ 𝐺 ) 𝑋 ) ) | 
						
							| 166 | 1 13 2 132 126 128 111 115 | btwncolg3 | ⊢ ( ( ( ( 𝜑  ∧  𝐷  ∈  ( 𝐵 𝐼 𝐶 ) )  ∧  𝑋  ∈  ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) )  ∧  𝑋  ≠  𝐵 )  →  ( 𝐶  ∈  ( 𝑋 ( LineG ‘ 𝐺 ) 𝐴 )  ∨  𝑋  =  𝐴 ) ) | 
						
							| 167 | 166 | adantr | ⊢ ( ( ( ( ( 𝜑  ∧  𝐷  ∈  ( 𝐵 𝐼 𝐶 ) )  ∧  𝑋  ∈  ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) )  ∧  𝑋  ≠  𝐵 )  ∧  𝑋  ≠  𝐶 )  →  ( 𝐶  ∈  ( 𝑋 ( LineG ‘ 𝐺 ) 𝐴 )  ∨  𝑋  =  𝐴 ) ) | 
						
							| 168 | 1 2 13 142 143 144 145 146 165 167 | coltr | ⊢ ( ( ( ( ( 𝜑  ∧  𝐷  ∈  ( 𝐵 𝐼 𝐶 ) )  ∧  𝑋  ∈  ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) )  ∧  𝑋  ≠  𝐵 )  ∧  𝑋  ≠  𝐶 )  →  ( 𝐵  ∈  ( 𝑋 ( LineG ‘ 𝐺 ) 𝐴 )  ∨  𝑋  =  𝐴 ) ) | 
						
							| 169 | 141 168 | pm2.61dane | ⊢ ( ( ( ( 𝜑  ∧  𝐷  ∈  ( 𝐵 𝐼 𝐶 ) )  ∧  𝑋  ∈  ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) )  ∧  𝑋  ≠  𝐵 )  →  ( 𝐵  ∈  ( 𝑋 ( LineG ‘ 𝐺 ) 𝐴 )  ∨  𝑋  =  𝐴 ) ) | 
						
							| 170 | 1 13 2 132 126 128 127 169 | colrot2 | ⊢ ( ( ( ( 𝜑  ∧  𝐷  ∈  ( 𝐵 𝐼 𝐶 ) )  ∧  𝑋  ∈  ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) )  ∧  𝑋  ≠  𝐵 )  →  ( 𝐴  ∈  ( 𝐵 ( LineG ‘ 𝐺 ) 𝑋 )  ∨  𝐵  =  𝑋 ) ) | 
						
							| 171 | 1 13 2 132 127 126 128 170 | colcom | ⊢ ( ( ( ( 𝜑  ∧  𝐷  ∈  ( 𝐵 𝐼 𝐶 ) )  ∧  𝑋  ∈  ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) )  ∧  𝑋  ≠  𝐵 )  →  ( 𝐴  ∈  ( 𝑋 ( LineG ‘ 𝐺 ) 𝐵 )  ∨  𝑋  =  𝐵 ) ) | 
						
							| 172 | 171 | orcomd | ⊢ ( ( ( ( 𝜑  ∧  𝐷  ∈  ( 𝐵 𝐼 𝐶 ) )  ∧  𝑋  ∈  ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) )  ∧  𝑋  ≠  𝐵 )  →  ( 𝑋  =  𝐵  ∨  𝐴  ∈  ( 𝑋 ( LineG ‘ 𝐺 ) 𝐵 ) ) ) | 
						
							| 173 | 172 | ord | ⊢ ( ( ( ( 𝜑  ∧  𝐷  ∈  ( 𝐵 𝐼 𝐶 ) )  ∧  𝑋  ∈  ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) )  ∧  𝑋  ≠  𝐵 )  →  ( ¬  𝑋  =  𝐵  →  𝐴  ∈  ( 𝑋 ( LineG ‘ 𝐺 ) 𝐵 ) ) ) | 
						
							| 174 | 131 173 | mpd | ⊢ ( ( ( ( 𝜑  ∧  𝐷  ∈  ( 𝐵 𝐼 𝐶 ) )  ∧  𝑋  ∈  ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) )  ∧  𝑋  ≠  𝐵 )  →  𝐴  ∈  ( 𝑋 ( LineG ‘ 𝐺 ) 𝐵 ) ) | 
						
							| 175 | 1 2 3 126 127 128 129 128 13 174 | lnhl | ⊢ ( ( ( ( 𝜑  ∧  𝐷  ∈  ( 𝐵 𝐼 𝐶 ) )  ∧  𝑋  ∈  ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) )  ∧  𝑋  ≠  𝐵 )  →  ( 𝐴 ( 𝐾 ‘ 𝐵 ) 𝑋  ∨  𝐵  ∈  ( 𝑋 𝐼 𝐴 ) ) ) | 
						
							| 176 | 99 125 175 | mpjaodan | ⊢ ( ( ( ( 𝜑  ∧  𝐷  ∈  ( 𝐵 𝐼 𝐶 ) )  ∧  𝑋  ∈  ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) )  ∧  𝑋  ≠  𝐵 )  →  ∃ 𝑒  ∈  𝑃 ( 𝐴 ( 𝐾 ‘ 𝐵 ) 𝑒  ∧  𝑒  ∈  ( 𝑋 𝐼 𝐷 ) ) ) | 
						
							| 177 | 88 176 | pm2.61dane | ⊢ ( ( ( 𝜑  ∧  𝐷  ∈  ( 𝐵 𝐼 𝐶 ) )  ∧  𝑋  ∈  ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) )  →  ∃ 𝑒  ∈  𝑃 ( 𝐴 ( 𝐾 ‘ 𝐵 ) 𝑒  ∧  𝑒  ∈  ( 𝑋 𝐼 𝐷 ) ) ) | 
						
							| 178 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝐷  ∈  ( 𝐵 𝐼 𝐶 ) )  →  𝐺  ∈  TarskiG ) | 
						
							| 179 | 8 | adantr | ⊢ ( ( 𝜑  ∧  𝐷  ∈  ( 𝐵 𝐼 𝐶 ) )  →  𝑋  ∈  𝑃 ) | 
						
							| 180 | 6 | adantr | ⊢ ( ( 𝜑  ∧  𝐷  ∈  ( 𝐵 𝐼 𝐶 ) )  →  𝐵  ∈  𝑃 ) | 
						
							| 181 | 5 | adantr | ⊢ ( ( 𝜑  ∧  𝐷  ∈  ( 𝐵 𝐼 𝐶 ) )  →  𝐴  ∈  𝑃 ) | 
						
							| 182 | 9 | adantr | ⊢ ( ( 𝜑  ∧  𝐷  ∈  ( 𝐵 𝐼 𝐶 ) )  →  𝐷  ∈  𝑃 ) | 
						
							| 183 |  | simpr | ⊢ ( ( 𝜑  ∧  𝐷  ∈  ( 𝐵 𝐼 𝐶 ) )  →  𝐷  ∈  ( 𝐵 𝐼 𝐶 ) ) | 
						
							| 184 | 1 20 2 178 179 180 68 181 182 70 183 | axtgpasch | ⊢ ( ( 𝜑  ∧  𝐷  ∈  ( 𝐵 𝐼 𝐶 ) )  →  ∃ 𝑒  ∈  𝑃 ( 𝑒  ∈  ( 𝐴 𝐼 𝐵 )  ∧  𝑒  ∈  ( 𝐷 𝐼 𝑋 ) ) ) | 
						
							| 185 | 184 | adantr | ⊢ ( ( ( 𝜑  ∧  𝐷  ∈  ( 𝐵 𝐼 𝐶 ) )  ∧  ¬  𝑋  ∈  ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) )  →  ∃ 𝑒  ∈  𝑃 ( 𝑒  ∈  ( 𝐴 𝐼 𝐵 )  ∧  𝑒  ∈  ( 𝐷 𝐼 𝑋 ) ) ) | 
						
							| 186 |  | simplr | ⊢ ( ( ( ( ( 𝜑  ∧  𝐷  ∈  ( 𝐵 𝐼 𝐶 ) )  ∧  ¬  𝑋  ∈  ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) )  ∧  𝑒  ∈  𝑃 )  ∧  ( 𝑒  ∈  ( 𝐴 𝐼 𝐵 )  ∧  𝑒  ∈  ( 𝐷 𝐼 𝑋 ) ) )  →  𝑒  ∈  𝑃 ) | 
						
							| 187 | 181 | ad3antrrr | ⊢ ( ( ( ( ( 𝜑  ∧  𝐷  ∈  ( 𝐵 𝐼 𝐶 ) )  ∧  ¬  𝑋  ∈  ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) )  ∧  𝑒  ∈  𝑃 )  ∧  ( 𝑒  ∈  ( 𝐴 𝐼 𝐵 )  ∧  𝑒  ∈  ( 𝐷 𝐼 𝑋 ) ) )  →  𝐴  ∈  𝑃 ) | 
						
							| 188 | 180 | ad3antrrr | ⊢ ( ( ( ( ( 𝜑  ∧  𝐷  ∈  ( 𝐵 𝐼 𝐶 ) )  ∧  ¬  𝑋  ∈  ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) )  ∧  𝑒  ∈  𝑃 )  ∧  ( 𝑒  ∈  ( 𝐴 𝐼 𝐵 )  ∧  𝑒  ∈  ( 𝐷 𝐼 𝑋 ) ) )  →  𝐵  ∈  𝑃 ) | 
						
							| 189 | 178 | ad3antrrr | ⊢ ( ( ( ( ( 𝜑  ∧  𝐷  ∈  ( 𝐵 𝐼 𝐶 ) )  ∧  ¬  𝑋  ∈  ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) )  ∧  𝑒  ∈  𝑃 )  ∧  ( 𝑒  ∈  ( 𝐴 𝐼 𝐵 )  ∧  𝑒  ∈  ( 𝐷 𝐼 𝑋 ) ) )  →  𝐺  ∈  TarskiG ) | 
						
							| 190 |  | simprl | ⊢ ( ( ( ( ( 𝜑  ∧  𝐷  ∈  ( 𝐵 𝐼 𝐶 ) )  ∧  ¬  𝑋  ∈  ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) )  ∧  𝑒  ∈  𝑃 )  ∧  ( 𝑒  ∈  ( 𝐴 𝐼 𝐵 )  ∧  𝑒  ∈  ( 𝐷 𝐼 𝑋 ) ) )  →  𝑒  ∈  ( 𝐴 𝐼 𝐵 ) ) | 
						
							| 191 | 1 20 2 189 187 186 188 190 | tgbtwncom | ⊢ ( ( ( ( ( 𝜑  ∧  𝐷  ∈  ( 𝐵 𝐼 𝐶 ) )  ∧  ¬  𝑋  ∈  ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) )  ∧  𝑒  ∈  𝑃 )  ∧  ( 𝑒  ∈  ( 𝐴 𝐼 𝐵 )  ∧  𝑒  ∈  ( 𝐷 𝐼 𝑋 ) ) )  →  𝑒  ∈  ( 𝐵 𝐼 𝐴 ) ) | 
						
							| 192 | 10 | necomd | ⊢ ( 𝜑  →  𝐵  ≠  𝐴 ) | 
						
							| 193 | 192 | ad4antr | ⊢ ( ( ( ( ( 𝜑  ∧  𝐷  ∈  ( 𝐵 𝐼 𝐶 ) )  ∧  ¬  𝑋  ∈  ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) )  ∧  𝑒  ∈  𝑃 )  ∧  ( 𝑒  ∈  ( 𝐴 𝐼 𝐵 )  ∧  𝑒  ∈  ( 𝐷 𝐼 𝑋 ) ) )  →  𝐵  ≠  𝐴 ) | 
						
							| 194 | 189 | adantr | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝐷  ∈  ( 𝐵 𝐼 𝐶 ) )  ∧  ¬  𝑋  ∈  ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) )  ∧  𝑒  ∈  𝑃 )  ∧  ( 𝑒  ∈  ( 𝐴 𝐼 𝐵 )  ∧  𝑒  ∈  ( 𝐷 𝐼 𝑋 ) ) )  ∧  𝑒  =  𝐵 )  →  𝐺  ∈  TarskiG ) | 
						
							| 195 | 9 | ad5antr | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝐷  ∈  ( 𝐵 𝐼 𝐶 ) )  ∧  ¬  𝑋  ∈  ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) )  ∧  𝑒  ∈  𝑃 )  ∧  ( 𝑒  ∈  ( 𝐴 𝐼 𝐵 )  ∧  𝑒  ∈  ( 𝐷 𝐼 𝑋 ) ) )  ∧  𝑒  =  𝐵 )  →  𝐷  ∈  𝑃 ) | 
						
							| 196 | 8 | ad5antr | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝐷  ∈  ( 𝐵 𝐼 𝐶 ) )  ∧  ¬  𝑋  ∈  ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) )  ∧  𝑒  ∈  𝑃 )  ∧  ( 𝑒  ∈  ( 𝐴 𝐼 𝐵 )  ∧  𝑒  ∈  ( 𝐷 𝐼 𝑋 ) ) )  ∧  𝑒  =  𝐵 )  →  𝑋  ∈  𝑃 ) | 
						
							| 197 | 188 | adantr | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝐷  ∈  ( 𝐵 𝐼 𝐶 ) )  ∧  ¬  𝑋  ∈  ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) )  ∧  𝑒  ∈  𝑃 )  ∧  ( 𝑒  ∈  ( 𝐴 𝐼 𝐵 )  ∧  𝑒  ∈  ( 𝐷 𝐼 𝑋 ) ) )  ∧  𝑒  =  𝐵 )  →  𝐵  ∈  𝑃 ) | 
						
							| 198 |  | simp-4r | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝐷  ∈  ( 𝐵 𝐼 𝐶 ) )  ∧  ¬  𝑋  ∈  ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) )  ∧  𝑒  ∈  𝑃 )  ∧  ( 𝑒  ∈  ( 𝐴 𝐼 𝐵 )  ∧  𝑒  ∈  ( 𝐷 𝐼 𝑋 ) ) )  ∧  𝑒  =  𝐵 )  →  ¬  𝑋  ∈  ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) ) | 
						
							| 199 | 106 | necomd | ⊢ ( 𝜑  →  𝐵  ≠  𝐷 ) | 
						
							| 200 | 199 | ad5antr | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝐷  ∈  ( 𝐵 𝐼 𝐶 ) )  ∧  ¬  𝑋  ∈  ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) )  ∧  𝑒  ∈  𝑃 )  ∧  ( 𝑒  ∈  ( 𝐴 𝐼 𝐵 )  ∧  𝑒  ∈  ( 𝐷 𝐼 𝑋 ) ) )  ∧  𝑒  =  𝐵 )  →  𝐵  ≠  𝐷 ) | 
						
							| 201 | 200 | neneqd | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝐷  ∈  ( 𝐵 𝐼 𝐶 ) )  ∧  ¬  𝑋  ∈  ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) )  ∧  𝑒  ∈  𝑃 )  ∧  ( 𝑒  ∈  ( 𝐴 𝐼 𝐵 )  ∧  𝑒  ∈  ( 𝐷 𝐼 𝑋 ) ) )  ∧  𝑒  =  𝐵 )  →  ¬  𝐵  =  𝐷 ) | 
						
							| 202 |  | ioran | ⊢ ( ¬  ( 𝑋  ∈  ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 )  ∨  𝐵  =  𝐷 )  ↔  ( ¬  𝑋  ∈  ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 )  ∧  ¬  𝐵  =  𝐷 ) ) | 
						
							| 203 | 198 201 202 | sylanbrc | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝐷  ∈  ( 𝐵 𝐼 𝐶 ) )  ∧  ¬  𝑋  ∈  ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) )  ∧  𝑒  ∈  𝑃 )  ∧  ( 𝑒  ∈  ( 𝐴 𝐼 𝐵 )  ∧  𝑒  ∈  ( 𝐷 𝐼 𝑋 ) ) )  ∧  𝑒  =  𝐵 )  →  ¬  ( 𝑋  ∈  ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 )  ∨  𝐵  =  𝐷 ) ) | 
						
							| 204 | 1 13 2 194 197 195 196 203 | ncolrot2 | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝐷  ∈  ( 𝐵 𝐼 𝐶 ) )  ∧  ¬  𝑋  ∈  ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) )  ∧  𝑒  ∈  𝑃 )  ∧  ( 𝑒  ∈  ( 𝐴 𝐼 𝐵 )  ∧  𝑒  ∈  ( 𝐷 𝐼 𝑋 ) ) )  ∧  𝑒  =  𝐵 )  →  ¬  ( 𝐷  ∈  ( 𝑋 ( LineG ‘ 𝐺 ) 𝐵 )  ∨  𝑋  =  𝐵 ) ) | 
						
							| 205 |  | simpr | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝐷  ∈  ( 𝐵 𝐼 𝐶 ) )  ∧  ¬  𝑋  ∈  ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) )  ∧  𝑒  ∈  𝑃 )  ∧  ( 𝑒  ∈  ( 𝐴 𝐼 𝐵 )  ∧  𝑒  ∈  ( 𝐷 𝐼 𝑋 ) ) )  ∧  𝑒  =  𝐵 )  →  𝑒  =  𝐵 ) | 
						
							| 206 | 186 | adantr | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝐷  ∈  ( 𝐵 𝐼 𝐶 ) )  ∧  ¬  𝑋  ∈  ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) )  ∧  𝑒  ∈  𝑃 )  ∧  ( 𝑒  ∈  ( 𝐴 𝐼 𝐵 )  ∧  𝑒  ∈  ( 𝐷 𝐼 𝑋 ) ) )  ∧  𝑒  =  𝐵 )  →  𝑒  ∈  𝑃 ) | 
						
							| 207 | 1 2 13 194 195 196 197 204 | ncolne1 | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝐷  ∈  ( 𝐵 𝐼 𝐶 ) )  ∧  ¬  𝑋  ∈  ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) )  ∧  𝑒  ∈  𝑃 )  ∧  ( 𝑒  ∈  ( 𝐴 𝐼 𝐵 )  ∧  𝑒  ∈  ( 𝐷 𝐼 𝑋 ) ) )  ∧  𝑒  =  𝐵 )  →  𝐷  ≠  𝑋 ) | 
						
							| 208 |  | simplrr | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝐷  ∈  ( 𝐵 𝐼 𝐶 ) )  ∧  ¬  𝑋  ∈  ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) )  ∧  𝑒  ∈  𝑃 )  ∧  ( 𝑒  ∈  ( 𝐴 𝐼 𝐵 )  ∧  𝑒  ∈  ( 𝐷 𝐼 𝑋 ) ) )  ∧  𝑒  =  𝐵 )  →  𝑒  ∈  ( 𝐷 𝐼 𝑋 ) ) | 
						
							| 209 | 1 2 13 194 195 196 206 207 208 | btwnlng1 | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝐷  ∈  ( 𝐵 𝐼 𝐶 ) )  ∧  ¬  𝑋  ∈  ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) )  ∧  𝑒  ∈  𝑃 )  ∧  ( 𝑒  ∈  ( 𝐴 𝐼 𝐵 )  ∧  𝑒  ∈  ( 𝐷 𝐼 𝑋 ) ) )  ∧  𝑒  =  𝐵 )  →  𝑒  ∈  ( 𝐷 ( LineG ‘ 𝐺 ) 𝑋 ) ) | 
						
							| 210 | 205 209 | eqeltrrd | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝐷  ∈  ( 𝐵 𝐼 𝐶 ) )  ∧  ¬  𝑋  ∈  ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) )  ∧  𝑒  ∈  𝑃 )  ∧  ( 𝑒  ∈  ( 𝐴 𝐼 𝐵 )  ∧  𝑒  ∈  ( 𝐷 𝐼 𝑋 ) ) )  ∧  𝑒  =  𝐵 )  →  𝐵  ∈  ( 𝐷 ( LineG ‘ 𝐺 ) 𝑋 ) ) | 
						
							| 211 | 1 2 13 194 195 196 207 | tglinerflx1 | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝐷  ∈  ( 𝐵 𝐼 𝐶 ) )  ∧  ¬  𝑋  ∈  ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) )  ∧  𝑒  ∈  𝑃 )  ∧  ( 𝑒  ∈  ( 𝐴 𝐼 𝐵 )  ∧  𝑒  ∈  ( 𝐷 𝐼 𝑋 ) ) )  ∧  𝑒  =  𝐵 )  →  𝐷  ∈  ( 𝐷 ( LineG ‘ 𝐺 ) 𝑋 ) ) | 
						
							| 212 | 106 | ad5antr | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝐷  ∈  ( 𝐵 𝐼 𝐶 ) )  ∧  ¬  𝑋  ∈  ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) )  ∧  𝑒  ∈  𝑃 )  ∧  ( 𝑒  ∈  ( 𝐴 𝐼 𝐵 )  ∧  𝑒  ∈  ( 𝐷 𝐼 𝑋 ) ) )  ∧  𝑒  =  𝐵 )  →  𝐷  ≠  𝐵 ) | 
						
							| 213 | 212 | necomd | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝐷  ∈  ( 𝐵 𝐼 𝐶 ) )  ∧  ¬  𝑋  ∈  ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) )  ∧  𝑒  ∈  𝑃 )  ∧  ( 𝑒  ∈  ( 𝐴 𝐼 𝐵 )  ∧  𝑒  ∈  ( 𝐷 𝐼 𝑋 ) ) )  ∧  𝑒  =  𝐵 )  →  𝐵  ≠  𝐷 ) | 
						
							| 214 | 1 2 13 194 197 195 213 | tglinerflx1 | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝐷  ∈  ( 𝐵 𝐼 𝐶 ) )  ∧  ¬  𝑋  ∈  ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) )  ∧  𝑒  ∈  𝑃 )  ∧  ( 𝑒  ∈  ( 𝐴 𝐼 𝐵 )  ∧  𝑒  ∈  ( 𝐷 𝐼 𝑋 ) ) )  ∧  𝑒  =  𝐵 )  →  𝐵  ∈  ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) ) | 
						
							| 215 | 1 2 13 194 197 195 213 | tglinerflx2 | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝐷  ∈  ( 𝐵 𝐼 𝐶 ) )  ∧  ¬  𝑋  ∈  ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) )  ∧  𝑒  ∈  𝑃 )  ∧  ( 𝑒  ∈  ( 𝐴 𝐼 𝐵 )  ∧  𝑒  ∈  ( 𝐷 𝐼 𝑋 ) ) )  ∧  𝑒  =  𝐵 )  →  𝐷  ∈  ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) ) | 
						
							| 216 | 1 2 13 194 195 196 197 195 204 210 211 214 215 | tglineinteq | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝐷  ∈  ( 𝐵 𝐼 𝐶 ) )  ∧  ¬  𝑋  ∈  ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) )  ∧  𝑒  ∈  𝑃 )  ∧  ( 𝑒  ∈  ( 𝐴 𝐼 𝐵 )  ∧  𝑒  ∈  ( 𝐷 𝐼 𝑋 ) ) )  ∧  𝑒  =  𝐵 )  →  𝐵  =  𝐷 ) | 
						
							| 217 | 216 201 | pm2.65da | ⊢ ( ( ( ( ( 𝜑  ∧  𝐷  ∈  ( 𝐵 𝐼 𝐶 ) )  ∧  ¬  𝑋  ∈  ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) )  ∧  𝑒  ∈  𝑃 )  ∧  ( 𝑒  ∈  ( 𝐴 𝐼 𝐵 )  ∧  𝑒  ∈  ( 𝐷 𝐼 𝑋 ) ) )  →  ¬  𝑒  =  𝐵 ) | 
						
							| 218 | 217 | neqned | ⊢ ( ( ( ( ( 𝜑  ∧  𝐷  ∈  ( 𝐵 𝐼 𝐶 ) )  ∧  ¬  𝑋  ∈  ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) )  ∧  𝑒  ∈  𝑃 )  ∧  ( 𝑒  ∈  ( 𝐴 𝐼 𝐵 )  ∧  𝑒  ∈  ( 𝐷 𝐼 𝑋 ) ) )  →  𝑒  ≠  𝐵 ) | 
						
							| 219 | 1 2 3 188 187 186 189 187 191 193 218 | btwnhl1 | ⊢ ( ( ( ( ( 𝜑  ∧  𝐷  ∈  ( 𝐵 𝐼 𝐶 ) )  ∧  ¬  𝑋  ∈  ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) )  ∧  𝑒  ∈  𝑃 )  ∧  ( 𝑒  ∈  ( 𝐴 𝐼 𝐵 )  ∧  𝑒  ∈  ( 𝐷 𝐼 𝑋 ) ) )  →  𝑒 ( 𝐾 ‘ 𝐵 ) 𝐴 ) | 
						
							| 220 | 1 2 3 186 187 188 189 219 | hlcomd | ⊢ ( ( ( ( ( 𝜑  ∧  𝐷  ∈  ( 𝐵 𝐼 𝐶 ) )  ∧  ¬  𝑋  ∈  ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) )  ∧  𝑒  ∈  𝑃 )  ∧  ( 𝑒  ∈  ( 𝐴 𝐼 𝐵 )  ∧  𝑒  ∈  ( 𝐷 𝐼 𝑋 ) ) )  →  𝐴 ( 𝐾 ‘ 𝐵 ) 𝑒 ) | 
						
							| 221 | 178 | ad3antrrr | ⊢ ( ( ( ( ( 𝜑  ∧  𝐷  ∈  ( 𝐵 𝐼 𝐶 ) )  ∧  ¬  𝑋  ∈  ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) )  ∧  𝑒  ∈  𝑃 )  ∧  𝑒  ∈  ( 𝐷 𝐼 𝑋 ) )  →  𝐺  ∈  TarskiG ) | 
						
							| 222 | 182 | ad3antrrr | ⊢ ( ( ( ( ( 𝜑  ∧  𝐷  ∈  ( 𝐵 𝐼 𝐶 ) )  ∧  ¬  𝑋  ∈  ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) )  ∧  𝑒  ∈  𝑃 )  ∧  𝑒  ∈  ( 𝐷 𝐼 𝑋 ) )  →  𝐷  ∈  𝑃 ) | 
						
							| 223 |  | simplr | ⊢ ( ( ( ( ( 𝜑  ∧  𝐷  ∈  ( 𝐵 𝐼 𝐶 ) )  ∧  ¬  𝑋  ∈  ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) )  ∧  𝑒  ∈  𝑃 )  ∧  𝑒  ∈  ( 𝐷 𝐼 𝑋 ) )  →  𝑒  ∈  𝑃 ) | 
						
							| 224 | 179 | ad3antrrr | ⊢ ( ( ( ( ( 𝜑  ∧  𝐷  ∈  ( 𝐵 𝐼 𝐶 ) )  ∧  ¬  𝑋  ∈  ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) )  ∧  𝑒  ∈  𝑃 )  ∧  𝑒  ∈  ( 𝐷 𝐼 𝑋 ) )  →  𝑋  ∈  𝑃 ) | 
						
							| 225 |  | simpr | ⊢ ( ( ( ( ( 𝜑  ∧  𝐷  ∈  ( 𝐵 𝐼 𝐶 ) )  ∧  ¬  𝑋  ∈  ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) )  ∧  𝑒  ∈  𝑃 )  ∧  𝑒  ∈  ( 𝐷 𝐼 𝑋 ) )  →  𝑒  ∈  ( 𝐷 𝐼 𝑋 ) ) | 
						
							| 226 | 1 20 2 221 222 223 224 225 | tgbtwncom | ⊢ ( ( ( ( ( 𝜑  ∧  𝐷  ∈  ( 𝐵 𝐼 𝐶 ) )  ∧  ¬  𝑋  ∈  ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) )  ∧  𝑒  ∈  𝑃 )  ∧  𝑒  ∈  ( 𝐷 𝐼 𝑋 ) )  →  𝑒  ∈  ( 𝑋 𝐼 𝐷 ) ) | 
						
							| 227 | 226 | adantrl | ⊢ ( ( ( ( ( 𝜑  ∧  𝐷  ∈  ( 𝐵 𝐼 𝐶 ) )  ∧  ¬  𝑋  ∈  ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) )  ∧  𝑒  ∈  𝑃 )  ∧  ( 𝑒  ∈  ( 𝐴 𝐼 𝐵 )  ∧  𝑒  ∈  ( 𝐷 𝐼 𝑋 ) ) )  →  𝑒  ∈  ( 𝑋 𝐼 𝐷 ) ) | 
						
							| 228 | 220 227 | jca | ⊢ ( ( ( ( ( 𝜑  ∧  𝐷  ∈  ( 𝐵 𝐼 𝐶 ) )  ∧  ¬  𝑋  ∈  ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) )  ∧  𝑒  ∈  𝑃 )  ∧  ( 𝑒  ∈  ( 𝐴 𝐼 𝐵 )  ∧  𝑒  ∈  ( 𝐷 𝐼 𝑋 ) ) )  →  ( 𝐴 ( 𝐾 ‘ 𝐵 ) 𝑒  ∧  𝑒  ∈  ( 𝑋 𝐼 𝐷 ) ) ) | 
						
							| 229 | 228 | ex | ⊢ ( ( ( ( 𝜑  ∧  𝐷  ∈  ( 𝐵 𝐼 𝐶 ) )  ∧  ¬  𝑋  ∈  ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) )  ∧  𝑒  ∈  𝑃 )  →  ( ( 𝑒  ∈  ( 𝐴 𝐼 𝐵 )  ∧  𝑒  ∈  ( 𝐷 𝐼 𝑋 ) )  →  ( 𝐴 ( 𝐾 ‘ 𝐵 ) 𝑒  ∧  𝑒  ∈  ( 𝑋 𝐼 𝐷 ) ) ) ) | 
						
							| 230 | 229 | reximdva | ⊢ ( ( ( 𝜑  ∧  𝐷  ∈  ( 𝐵 𝐼 𝐶 ) )  ∧  ¬  𝑋  ∈  ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) )  →  ( ∃ 𝑒  ∈  𝑃 ( 𝑒  ∈  ( 𝐴 𝐼 𝐵 )  ∧  𝑒  ∈  ( 𝐷 𝐼 𝑋 ) )  →  ∃ 𝑒  ∈  𝑃 ( 𝐴 ( 𝐾 ‘ 𝐵 ) 𝑒  ∧  𝑒  ∈  ( 𝑋 𝐼 𝐷 ) ) ) ) | 
						
							| 231 | 185 230 | mpd | ⊢ ( ( ( 𝜑  ∧  𝐷  ∈  ( 𝐵 𝐼 𝐶 ) )  ∧  ¬  𝑋  ∈  ( 𝐵 ( LineG ‘ 𝐺 ) 𝐷 ) )  →  ∃ 𝑒  ∈  𝑃 ( 𝐴 ( 𝐾 ‘ 𝐵 ) 𝑒  ∧  𝑒  ∈  ( 𝑋 𝐼 𝐷 ) ) ) | 
						
							| 232 | 177 231 | pm2.61dan | ⊢ ( ( 𝜑  ∧  𝐷  ∈  ( 𝐵 𝐼 𝐶 ) )  →  ∃ 𝑒  ∈  𝑃 ( 𝐴 ( 𝐾 ‘ 𝐵 ) 𝑒  ∧  𝑒  ∈  ( 𝑋 𝐼 𝐷 ) ) ) | 
						
							| 233 | 76 | simp3d | ⊢ ( 𝜑  →  ( 𝐶  ∈  ( 𝐵 𝐼 𝐷 )  ∨  𝐷  ∈  ( 𝐵 𝐼 𝐶 ) ) ) | 
						
							| 234 | 53 232 233 | mpjaodan | ⊢ ( 𝜑  →  ∃ 𝑒  ∈  𝑃 ( 𝐴 ( 𝐾 ‘ 𝐵 ) 𝑒  ∧  𝑒  ∈  ( 𝑋 𝐼 𝐷 ) ) ) |