| Step | Hyp | Ref | Expression | 
						
							| 1 |  | outpasch.p | ⊢ 𝑃  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | outpasch.i | ⊢ 𝐼  =  ( Itv ‘ 𝐺 ) | 
						
							| 3 |  | outpasch.l | ⊢ 𝐿  =  ( LineG ‘ 𝐺 ) | 
						
							| 4 |  | outpasch.g | ⊢ ( 𝜑  →  𝐺  ∈  TarskiG ) | 
						
							| 5 |  | outpasch.a | ⊢ ( 𝜑  →  𝐴  ∈  𝑃 ) | 
						
							| 6 |  | outpasch.b | ⊢ ( 𝜑  →  𝐵  ∈  𝑃 ) | 
						
							| 7 |  | outpasch.c | ⊢ ( 𝜑  →  𝐶  ∈  𝑃 ) | 
						
							| 8 |  | outpasch.r | ⊢ ( 𝜑  →  𝑅  ∈  𝑃 ) | 
						
							| 9 |  | outpasch.q | ⊢ ( 𝜑  →  𝑄  ∈  𝑃 ) | 
						
							| 10 |  | outpasch.1 | ⊢ ( 𝜑  →  𝐶  ∈  ( 𝐴 𝐼 𝑅 ) ) | 
						
							| 11 |  | outpasch.2 | ⊢ ( 𝜑  →  𝑄  ∈  ( 𝐵 𝐼 𝐶 ) ) | 
						
							| 12 | 5 | adantr | ⊢ ( ( 𝜑  ∧  𝑄  ∈  ( 𝑅 𝐼 𝐶 ) )  →  𝐴  ∈  𝑃 ) | 
						
							| 13 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑄  ∈  ( 𝑅 𝐼 𝐶 ) )  ∧  𝑥  =  𝐴 )  →  𝑥  =  𝐴 ) | 
						
							| 14 | 13 | eleq1d | ⊢ ( ( ( 𝜑  ∧  𝑄  ∈  ( 𝑅 𝐼 𝐶 ) )  ∧  𝑥  =  𝐴 )  →  ( 𝑥  ∈  ( 𝐴 𝐼 𝐵 )  ↔  𝐴  ∈  ( 𝐴 𝐼 𝐵 ) ) ) | 
						
							| 15 | 13 | oveq2d | ⊢ ( ( ( 𝜑  ∧  𝑄  ∈  ( 𝑅 𝐼 𝐶 ) )  ∧  𝑥  =  𝐴 )  →  ( 𝑅 𝐼 𝑥 )  =  ( 𝑅 𝐼 𝐴 ) ) | 
						
							| 16 | 15 | eleq2d | ⊢ ( ( ( 𝜑  ∧  𝑄  ∈  ( 𝑅 𝐼 𝐶 ) )  ∧  𝑥  =  𝐴 )  →  ( 𝑄  ∈  ( 𝑅 𝐼 𝑥 )  ↔  𝑄  ∈  ( 𝑅 𝐼 𝐴 ) ) ) | 
						
							| 17 | 14 16 | anbi12d | ⊢ ( ( ( 𝜑  ∧  𝑄  ∈  ( 𝑅 𝐼 𝐶 ) )  ∧  𝑥  =  𝐴 )  →  ( ( 𝑥  ∈  ( 𝐴 𝐼 𝐵 )  ∧  𝑄  ∈  ( 𝑅 𝐼 𝑥 ) )  ↔  ( 𝐴  ∈  ( 𝐴 𝐼 𝐵 )  ∧  𝑄  ∈  ( 𝑅 𝐼 𝐴 ) ) ) ) | 
						
							| 18 |  | eqid | ⊢ ( dist ‘ 𝐺 )  =  ( dist ‘ 𝐺 ) | 
						
							| 19 | 1 18 2 4 5 6 | tgbtwntriv1 | ⊢ ( 𝜑  →  𝐴  ∈  ( 𝐴 𝐼 𝐵 ) ) | 
						
							| 20 | 19 | adantr | ⊢ ( ( 𝜑  ∧  𝑄  ∈  ( 𝑅 𝐼 𝐶 ) )  →  𝐴  ∈  ( 𝐴 𝐼 𝐵 ) ) | 
						
							| 21 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝑄  ∈  ( 𝑅 𝐼 𝐶 ) )  →  𝐺  ∈  TarskiG ) | 
						
							| 22 | 8 | adantr | ⊢ ( ( 𝜑  ∧  𝑄  ∈  ( 𝑅 𝐼 𝐶 ) )  →  𝑅  ∈  𝑃 ) | 
						
							| 23 | 9 | adantr | ⊢ ( ( 𝜑  ∧  𝑄  ∈  ( 𝑅 𝐼 𝐶 ) )  →  𝑄  ∈  𝑃 ) | 
						
							| 24 | 7 | adantr | ⊢ ( ( 𝜑  ∧  𝑄  ∈  ( 𝑅 𝐼 𝐶 ) )  →  𝐶  ∈  𝑃 ) | 
						
							| 25 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑄  ∈  ( 𝑅 𝐼 𝐶 ) )  →  𝑄  ∈  ( 𝑅 𝐼 𝐶 ) ) | 
						
							| 26 | 1 18 2 4 5 7 8 10 | tgbtwncom | ⊢ ( 𝜑  →  𝐶  ∈  ( 𝑅 𝐼 𝐴 ) ) | 
						
							| 27 | 26 | adantr | ⊢ ( ( 𝜑  ∧  𝑄  ∈  ( 𝑅 𝐼 𝐶 ) )  →  𝐶  ∈  ( 𝑅 𝐼 𝐴 ) ) | 
						
							| 28 | 1 18 2 21 22 23 24 12 25 27 | tgbtwnexch | ⊢ ( ( 𝜑  ∧  𝑄  ∈  ( 𝑅 𝐼 𝐶 ) )  →  𝑄  ∈  ( 𝑅 𝐼 𝐴 ) ) | 
						
							| 29 | 20 28 | jca | ⊢ ( ( 𝜑  ∧  𝑄  ∈  ( 𝑅 𝐼 𝐶 ) )  →  ( 𝐴  ∈  ( 𝐴 𝐼 𝐵 )  ∧  𝑄  ∈  ( 𝑅 𝐼 𝐴 ) ) ) | 
						
							| 30 | 12 17 29 | rspcedvd | ⊢ ( ( 𝜑  ∧  𝑄  ∈  ( 𝑅 𝐼 𝐶 ) )  →  ∃ 𝑥  ∈  𝑃 ( 𝑥  ∈  ( 𝐴 𝐼 𝐵 )  ∧  𝑄  ∈  ( 𝑅 𝐼 𝑥 ) ) ) | 
						
							| 31 | 30 | adantlr | ⊢ ( ( ( 𝜑  ∧  ( 𝑅  ∈  ( 𝑄 𝐿 𝐶 )  ∨  𝑄  =  𝐶 ) )  ∧  𝑄  ∈  ( 𝑅 𝐼 𝐶 ) )  →  ∃ 𝑥  ∈  𝑃 ( 𝑥  ∈  ( 𝐴 𝐼 𝐵 )  ∧  𝑄  ∈  ( 𝑅 𝐼 𝑥 ) ) ) | 
						
							| 32 | 6 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑅  ∈  ( 𝑄 𝐿 𝐶 )  ∨  𝑄  =  𝐶 ) )  ∧  ¬  𝑄  ∈  ( 𝑅 𝐼 𝐶 ) )  →  𝐵  ∈  𝑃 ) | 
						
							| 33 |  | eleq1 | ⊢ ( 𝑥  =  𝐵  →  ( 𝑥  ∈  ( 𝐴 𝐼 𝐵 )  ↔  𝐵  ∈  ( 𝐴 𝐼 𝐵 ) ) ) | 
						
							| 34 |  | oveq2 | ⊢ ( 𝑥  =  𝐵  →  ( 𝑅 𝐼 𝑥 )  =  ( 𝑅 𝐼 𝐵 ) ) | 
						
							| 35 | 34 | eleq2d | ⊢ ( 𝑥  =  𝐵  →  ( 𝑄  ∈  ( 𝑅 𝐼 𝑥 )  ↔  𝑄  ∈  ( 𝑅 𝐼 𝐵 ) ) ) | 
						
							| 36 | 33 35 | anbi12d | ⊢ ( 𝑥  =  𝐵  →  ( ( 𝑥  ∈  ( 𝐴 𝐼 𝐵 )  ∧  𝑄  ∈  ( 𝑅 𝐼 𝑥 ) )  ↔  ( 𝐵  ∈  ( 𝐴 𝐼 𝐵 )  ∧  𝑄  ∈  ( 𝑅 𝐼 𝐵 ) ) ) ) | 
						
							| 37 | 36 | adantl | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑅  ∈  ( 𝑄 𝐿 𝐶 )  ∨  𝑄  =  𝐶 ) )  ∧  ¬  𝑄  ∈  ( 𝑅 𝐼 𝐶 ) )  ∧  𝑥  =  𝐵 )  →  ( ( 𝑥  ∈  ( 𝐴 𝐼 𝐵 )  ∧  𝑄  ∈  ( 𝑅 𝐼 𝑥 ) )  ↔  ( 𝐵  ∈  ( 𝐴 𝐼 𝐵 )  ∧  𝑄  ∈  ( 𝑅 𝐼 𝐵 ) ) ) ) | 
						
							| 38 | 1 18 2 4 5 6 | tgbtwntriv2 | ⊢ ( 𝜑  →  𝐵  ∈  ( 𝐴 𝐼 𝐵 ) ) | 
						
							| 39 | 38 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑅  ∈  ( 𝑄 𝐿 𝐶 )  ∨  𝑄  =  𝐶 ) )  ∧  ¬  𝑄  ∈  ( 𝑅 𝐼 𝐶 ) )  →  𝐵  ∈  ( 𝐴 𝐼 𝐵 ) ) | 
						
							| 40 | 4 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑅  ∈  ( 𝑄 𝐿 𝐶 )  ∨  𝑄  =  𝐶 ) )  ∧  ¬  𝑄  ∈  ( 𝑅 𝐼 𝐶 ) )  ∧  𝑅  ∈  ( 𝑄 𝐼 𝐶 ) )  →  𝐺  ∈  TarskiG ) | 
						
							| 41 | 7 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑅  ∈  ( 𝑄 𝐿 𝐶 )  ∨  𝑄  =  𝐶 ) )  ∧  ¬  𝑄  ∈  ( 𝑅 𝐼 𝐶 ) )  ∧  𝑅  ∈  ( 𝑄 𝐼 𝐶 ) )  →  𝐶  ∈  𝑃 ) | 
						
							| 42 | 8 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑅  ∈  ( 𝑄 𝐿 𝐶 )  ∨  𝑄  =  𝐶 ) )  ∧  ¬  𝑄  ∈  ( 𝑅 𝐼 𝐶 ) )  ∧  𝑅  ∈  ( 𝑄 𝐼 𝐶 ) )  →  𝑅  ∈  𝑃 ) | 
						
							| 43 | 9 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑅  ∈  ( 𝑄 𝐿 𝐶 )  ∨  𝑄  =  𝐶 ) )  ∧  ¬  𝑄  ∈  ( 𝑅 𝐼 𝐶 ) )  ∧  𝑅  ∈  ( 𝑄 𝐼 𝐶 ) )  →  𝑄  ∈  𝑃 ) | 
						
							| 44 | 6 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑅  ∈  ( 𝑄 𝐿 𝐶 )  ∨  𝑄  =  𝐶 ) )  ∧  ¬  𝑄  ∈  ( 𝑅 𝐼 𝐶 ) )  ∧  𝑅  ∈  ( 𝑄 𝐼 𝐶 ) )  →  𝐵  ∈  𝑃 ) | 
						
							| 45 |  | simpr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑅  ∈  ( 𝑄 𝐿 𝐶 )  ∨  𝑄  =  𝐶 ) )  ∧  ¬  𝑄  ∈  ( 𝑅 𝐼 𝐶 ) )  ∧  𝑅  ∈  ( 𝑄 𝐼 𝐶 ) )  →  𝑅  ∈  ( 𝑄 𝐼 𝐶 ) ) | 
						
							| 46 | 1 18 2 40 43 42 41 45 | tgbtwncom | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑅  ∈  ( 𝑄 𝐿 𝐶 )  ∨  𝑄  =  𝐶 ) )  ∧  ¬  𝑄  ∈  ( 𝑅 𝐼 𝐶 ) )  ∧  𝑅  ∈  ( 𝑄 𝐼 𝐶 ) )  →  𝑅  ∈  ( 𝐶 𝐼 𝑄 ) ) | 
						
							| 47 | 1 18 2 4 6 9 7 11 | tgbtwncom | ⊢ ( 𝜑  →  𝑄  ∈  ( 𝐶 𝐼 𝐵 ) ) | 
						
							| 48 | 47 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑅  ∈  ( 𝑄 𝐿 𝐶 )  ∨  𝑄  =  𝐶 ) )  ∧  ¬  𝑄  ∈  ( 𝑅 𝐼 𝐶 ) )  ∧  𝑅  ∈  ( 𝑄 𝐼 𝐶 ) )  →  𝑄  ∈  ( 𝐶 𝐼 𝐵 ) ) | 
						
							| 49 | 1 18 2 40 41 42 43 44 46 48 | tgbtwnexch3 | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑅  ∈  ( 𝑄 𝐿 𝐶 )  ∨  𝑄  =  𝐶 ) )  ∧  ¬  𝑄  ∈  ( 𝑅 𝐼 𝐶 ) )  ∧  𝑅  ∈  ( 𝑄 𝐼 𝐶 ) )  →  𝑄  ∈  ( 𝑅 𝐼 𝐵 ) ) | 
						
							| 50 | 4 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑅  ∈  ( 𝑄 𝐿 𝐶 )  ∨  𝑄  =  𝐶 ) )  ∧  ¬  𝑄  ∈  ( 𝑅 𝐼 𝐶 ) )  ∧  𝐶  ∈  ( 𝑄 𝐼 𝑅 ) )  →  𝐺  ∈  TarskiG ) | 
						
							| 51 | 6 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑅  ∈  ( 𝑄 𝐿 𝐶 )  ∨  𝑄  =  𝐶 ) )  ∧  ¬  𝑄  ∈  ( 𝑅 𝐼 𝐶 ) )  ∧  𝐶  ∈  ( 𝑄 𝐼 𝑅 ) )  →  𝐵  ∈  𝑃 ) | 
						
							| 52 | 9 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑅  ∈  ( 𝑄 𝐿 𝐶 )  ∨  𝑄  =  𝐶 ) )  ∧  ¬  𝑄  ∈  ( 𝑅 𝐼 𝐶 ) )  ∧  𝐶  ∈  ( 𝑄 𝐼 𝑅 ) )  →  𝑄  ∈  𝑃 ) | 
						
							| 53 | 8 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑅  ∈  ( 𝑄 𝐿 𝐶 )  ∨  𝑄  =  𝐶 ) )  ∧  ¬  𝑄  ∈  ( 𝑅 𝐼 𝐶 ) )  ∧  𝐶  ∈  ( 𝑄 𝐼 𝑅 ) )  →  𝑅  ∈  𝑃 ) | 
						
							| 54 | 7 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑅  ∈  ( 𝑄 𝐿 𝐶 )  ∨  𝑄  =  𝐶 ) )  ∧  ¬  𝑄  ∈  ( 𝑅 𝐼 𝐶 ) )  ∧  𝐶  ∈  ( 𝑄 𝐼 𝑅 ) )  →  𝐶  ∈  𝑃 ) | 
						
							| 55 |  | simpr | ⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑅  ∈  ( 𝑄 𝐿 𝐶 )  ∨  𝑄  =  𝐶 ) )  ∧  ¬  𝑄  ∈  ( 𝑅 𝐼 𝐶 ) )  ∧  𝐶  ∈  ( 𝑄 𝐼 𝑅 ) )  ∧  𝑄  =  𝐶 )  →  𝑄  =  𝐶 ) | 
						
							| 56 | 1 18 2 4 8 7 | tgbtwntriv2 | ⊢ ( 𝜑  →  𝐶  ∈  ( 𝑅 𝐼 𝐶 ) ) | 
						
							| 57 | 56 | ad4antr | ⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑅  ∈  ( 𝑄 𝐿 𝐶 )  ∨  𝑄  =  𝐶 ) )  ∧  ¬  𝑄  ∈  ( 𝑅 𝐼 𝐶 ) )  ∧  𝐶  ∈  ( 𝑄 𝐼 𝑅 ) )  ∧  𝑄  =  𝐶 )  →  𝐶  ∈  ( 𝑅 𝐼 𝐶 ) ) | 
						
							| 58 | 55 57 | eqeltrd | ⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑅  ∈  ( 𝑄 𝐿 𝐶 )  ∨  𝑄  =  𝐶 ) )  ∧  ¬  𝑄  ∈  ( 𝑅 𝐼 𝐶 ) )  ∧  𝐶  ∈  ( 𝑄 𝐼 𝑅 ) )  ∧  𝑄  =  𝐶 )  →  𝑄  ∈  ( 𝑅 𝐼 𝐶 ) ) | 
						
							| 59 |  | simpllr | ⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑅  ∈  ( 𝑄 𝐿 𝐶 )  ∨  𝑄  =  𝐶 ) )  ∧  ¬  𝑄  ∈  ( 𝑅 𝐼 𝐶 ) )  ∧  𝐶  ∈  ( 𝑄 𝐼 𝑅 ) )  ∧  𝑄  =  𝐶 )  →  ¬  𝑄  ∈  ( 𝑅 𝐼 𝐶 ) ) | 
						
							| 60 | 58 59 | pm2.65da | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑅  ∈  ( 𝑄 𝐿 𝐶 )  ∨  𝑄  =  𝐶 ) )  ∧  ¬  𝑄  ∈  ( 𝑅 𝐼 𝐶 ) )  ∧  𝐶  ∈  ( 𝑄 𝐼 𝑅 ) )  →  ¬  𝑄  =  𝐶 ) | 
						
							| 61 | 60 | neqned | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑅  ∈  ( 𝑄 𝐿 𝐶 )  ∨  𝑄  =  𝐶 ) )  ∧  ¬  𝑄  ∈  ( 𝑅 𝐼 𝐶 ) )  ∧  𝐶  ∈  ( 𝑄 𝐼 𝑅 ) )  →  𝑄  ≠  𝐶 ) | 
						
							| 62 | 11 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑅  ∈  ( 𝑄 𝐿 𝐶 )  ∨  𝑄  =  𝐶 ) )  ∧  ¬  𝑄  ∈  ( 𝑅 𝐼 𝐶 ) )  ∧  𝐶  ∈  ( 𝑄 𝐼 𝑅 ) )  →  𝑄  ∈  ( 𝐵 𝐼 𝐶 ) ) | 
						
							| 63 |  | simpr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑅  ∈  ( 𝑄 𝐿 𝐶 )  ∨  𝑄  =  𝐶 ) )  ∧  ¬  𝑄  ∈  ( 𝑅 𝐼 𝐶 ) )  ∧  𝐶  ∈  ( 𝑄 𝐼 𝑅 ) )  →  𝐶  ∈  ( 𝑄 𝐼 𝑅 ) ) | 
						
							| 64 | 1 18 2 50 51 52 54 53 61 62 63 | tgbtwnouttr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑅  ∈  ( 𝑄 𝐿 𝐶 )  ∨  𝑄  =  𝐶 ) )  ∧  ¬  𝑄  ∈  ( 𝑅 𝐼 𝐶 ) )  ∧  𝐶  ∈  ( 𝑄 𝐼 𝑅 ) )  →  𝑄  ∈  ( 𝐵 𝐼 𝑅 ) ) | 
						
							| 65 | 1 18 2 50 51 52 53 64 | tgbtwncom | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑅  ∈  ( 𝑄 𝐿 𝐶 )  ∨  𝑄  =  𝐶 ) )  ∧  ¬  𝑄  ∈  ( 𝑅 𝐼 𝐶 ) )  ∧  𝐶  ∈  ( 𝑄 𝐼 𝑅 ) )  →  𝑄  ∈  ( 𝑅 𝐼 𝐵 ) ) | 
						
							| 66 | 1 3 2 4 9 7 8 | tgcolg | ⊢ ( 𝜑  →  ( ( 𝑅  ∈  ( 𝑄 𝐿 𝐶 )  ∨  𝑄  =  𝐶 )  ↔  ( 𝑅  ∈  ( 𝑄 𝐼 𝐶 )  ∨  𝑄  ∈  ( 𝑅 𝐼 𝐶 )  ∨  𝐶  ∈  ( 𝑄 𝐼 𝑅 ) ) ) ) | 
						
							| 67 | 66 | biimpa | ⊢ ( ( 𝜑  ∧  ( 𝑅  ∈  ( 𝑄 𝐿 𝐶 )  ∨  𝑄  =  𝐶 ) )  →  ( 𝑅  ∈  ( 𝑄 𝐼 𝐶 )  ∨  𝑄  ∈  ( 𝑅 𝐼 𝐶 )  ∨  𝐶  ∈  ( 𝑄 𝐼 𝑅 ) ) ) | 
						
							| 68 |  | 3orcoma | ⊢ ( ( 𝑄  ∈  ( 𝑅 𝐼 𝐶 )  ∨  𝑅  ∈  ( 𝑄 𝐼 𝐶 )  ∨  𝐶  ∈  ( 𝑄 𝐼 𝑅 ) )  ↔  ( 𝑅  ∈  ( 𝑄 𝐼 𝐶 )  ∨  𝑄  ∈  ( 𝑅 𝐼 𝐶 )  ∨  𝐶  ∈  ( 𝑄 𝐼 𝑅 ) ) ) | 
						
							| 69 |  | 3orass | ⊢ ( ( 𝑄  ∈  ( 𝑅 𝐼 𝐶 )  ∨  𝑅  ∈  ( 𝑄 𝐼 𝐶 )  ∨  𝐶  ∈  ( 𝑄 𝐼 𝑅 ) )  ↔  ( 𝑄  ∈  ( 𝑅 𝐼 𝐶 )  ∨  ( 𝑅  ∈  ( 𝑄 𝐼 𝐶 )  ∨  𝐶  ∈  ( 𝑄 𝐼 𝑅 ) ) ) ) | 
						
							| 70 | 68 69 | bitr3i | ⊢ ( ( 𝑅  ∈  ( 𝑄 𝐼 𝐶 )  ∨  𝑄  ∈  ( 𝑅 𝐼 𝐶 )  ∨  𝐶  ∈  ( 𝑄 𝐼 𝑅 ) )  ↔  ( 𝑄  ∈  ( 𝑅 𝐼 𝐶 )  ∨  ( 𝑅  ∈  ( 𝑄 𝐼 𝐶 )  ∨  𝐶  ∈  ( 𝑄 𝐼 𝑅 ) ) ) ) | 
						
							| 71 | 67 70 | sylib | ⊢ ( ( 𝜑  ∧  ( 𝑅  ∈  ( 𝑄 𝐿 𝐶 )  ∨  𝑄  =  𝐶 ) )  →  ( 𝑄  ∈  ( 𝑅 𝐼 𝐶 )  ∨  ( 𝑅  ∈  ( 𝑄 𝐼 𝐶 )  ∨  𝐶  ∈  ( 𝑄 𝐼 𝑅 ) ) ) ) | 
						
							| 72 | 71 | orcanai | ⊢ ( ( ( 𝜑  ∧  ( 𝑅  ∈  ( 𝑄 𝐿 𝐶 )  ∨  𝑄  =  𝐶 ) )  ∧  ¬  𝑄  ∈  ( 𝑅 𝐼 𝐶 ) )  →  ( 𝑅  ∈  ( 𝑄 𝐼 𝐶 )  ∨  𝐶  ∈  ( 𝑄 𝐼 𝑅 ) ) ) | 
						
							| 73 | 49 65 72 | mpjaodan | ⊢ ( ( ( 𝜑  ∧  ( 𝑅  ∈  ( 𝑄 𝐿 𝐶 )  ∨  𝑄  =  𝐶 ) )  ∧  ¬  𝑄  ∈  ( 𝑅 𝐼 𝐶 ) )  →  𝑄  ∈  ( 𝑅 𝐼 𝐵 ) ) | 
						
							| 74 | 39 73 | jca | ⊢ ( ( ( 𝜑  ∧  ( 𝑅  ∈  ( 𝑄 𝐿 𝐶 )  ∨  𝑄  =  𝐶 ) )  ∧  ¬  𝑄  ∈  ( 𝑅 𝐼 𝐶 ) )  →  ( 𝐵  ∈  ( 𝐴 𝐼 𝐵 )  ∧  𝑄  ∈  ( 𝑅 𝐼 𝐵 ) ) ) | 
						
							| 75 | 32 37 74 | rspcedvd | ⊢ ( ( ( 𝜑  ∧  ( 𝑅  ∈  ( 𝑄 𝐿 𝐶 )  ∨  𝑄  =  𝐶 ) )  ∧  ¬  𝑄  ∈  ( 𝑅 𝐼 𝐶 ) )  →  ∃ 𝑥  ∈  𝑃 ( 𝑥  ∈  ( 𝐴 𝐼 𝐵 )  ∧  𝑄  ∈  ( 𝑅 𝐼 𝑥 ) ) ) | 
						
							| 76 | 31 75 | pm2.61dan | ⊢ ( ( 𝜑  ∧  ( 𝑅  ∈  ( 𝑄 𝐿 𝐶 )  ∨  𝑄  =  𝐶 ) )  →  ∃ 𝑥  ∈  𝑃 ( 𝑥  ∈  ( 𝐴 𝐼 𝐵 )  ∧  𝑄  ∈  ( 𝑅 𝐼 𝑥 ) ) ) | 
						
							| 77 | 6 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ¬  ( 𝑅  ∈  ( 𝑄 𝐿 𝐶 )  ∨  𝑄  =  𝐶 ) )  ∧  𝐵  ∈  ( 𝑅 𝐿 𝑄 ) )  →  𝐵  ∈  𝑃 ) | 
						
							| 78 | 36 | adantl | ⊢ ( ( ( ( 𝜑  ∧  ¬  ( 𝑅  ∈  ( 𝑄 𝐿 𝐶 )  ∨  𝑄  =  𝐶 ) )  ∧  𝐵  ∈  ( 𝑅 𝐿 𝑄 ) )  ∧  𝑥  =  𝐵 )  →  ( ( 𝑥  ∈  ( 𝐴 𝐼 𝐵 )  ∧  𝑄  ∈  ( 𝑅 𝐼 𝑥 ) )  ↔  ( 𝐵  ∈  ( 𝐴 𝐼 𝐵 )  ∧  𝑄  ∈  ( 𝑅 𝐼 𝐵 ) ) ) ) | 
						
							| 79 | 38 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ¬  ( 𝑅  ∈  ( 𝑄 𝐿 𝐶 )  ∨  𝑄  =  𝐶 ) )  ∧  𝐵  ∈  ( 𝑅 𝐿 𝑄 ) )  →  𝐵  ∈  ( 𝐴 𝐼 𝐵 ) ) | 
						
							| 80 | 4 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ¬  ( 𝑅  ∈  ( 𝑄 𝐿 𝐶 )  ∨  𝑄  =  𝐶 ) )  ∧  𝐵  ∈  ( 𝑅 𝐿 𝑄 ) )  →  𝐺  ∈  TarskiG ) | 
						
							| 81 | 8 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ¬  ( 𝑅  ∈  ( 𝑄 𝐿 𝐶 )  ∨  𝑄  =  𝐶 ) )  ∧  𝐵  ∈  ( 𝑅 𝐿 𝑄 ) )  →  𝑅  ∈  𝑃 ) | 
						
							| 82 | 9 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ¬  ( 𝑅  ∈  ( 𝑄 𝐿 𝐶 )  ∨  𝑄  =  𝐶 ) )  ∧  𝐵  ∈  ( 𝑅 𝐿 𝑄 ) )  →  𝑄  ∈  𝑃 ) | 
						
							| 83 | 7 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ¬  ( 𝑅  ∈  ( 𝑄 𝐿 𝐶 )  ∨  𝑄  =  𝐶 ) )  ∧  𝐵  ∈  ( 𝑅 𝐿 𝑄 ) )  →  𝐶  ∈  𝑃 ) | 
						
							| 84 |  | simplr | ⊢ ( ( ( 𝜑  ∧  ¬  ( 𝑅  ∈  ( 𝑄 𝐿 𝐶 )  ∨  𝑄  =  𝐶 ) )  ∧  𝐵  ∈  ( 𝑅 𝐿 𝑄 ) )  →  ¬  ( 𝑅  ∈  ( 𝑄 𝐿 𝐶 )  ∨  𝑄  =  𝐶 ) ) | 
						
							| 85 |  | simpr | ⊢ ( ( ( 𝜑  ∧  ¬  ( 𝑅  ∈  ( 𝑄 𝐿 𝐶 )  ∨  𝑄  =  𝐶 ) )  ∧  𝐵  ∈  ( 𝑅 𝐿 𝑄 ) )  →  𝐵  ∈  ( 𝑅 𝐿 𝑄 ) ) | 
						
							| 86 | 4 | adantr | ⊢ ( ( 𝜑  ∧  ¬  ( 𝑅  ∈  ( 𝑄 𝐿 𝐶 )  ∨  𝑄  =  𝐶 ) )  →  𝐺  ∈  TarskiG ) | 
						
							| 87 | 8 | adantr | ⊢ ( ( 𝜑  ∧  ¬  ( 𝑅  ∈  ( 𝑄 𝐿 𝐶 )  ∨  𝑄  =  𝐶 ) )  →  𝑅  ∈  𝑃 ) | 
						
							| 88 | 9 | adantr | ⊢ ( ( 𝜑  ∧  ¬  ( 𝑅  ∈  ( 𝑄 𝐿 𝐶 )  ∨  𝑄  =  𝐶 ) )  →  𝑄  ∈  𝑃 ) | 
						
							| 89 | 7 | adantr | ⊢ ( ( 𝜑  ∧  ¬  ( 𝑅  ∈  ( 𝑄 𝐿 𝐶 )  ∨  𝑄  =  𝐶 ) )  →  𝐶  ∈  𝑃 ) | 
						
							| 90 |  | simpr | ⊢ ( ( 𝜑  ∧  ¬  ( 𝑅  ∈  ( 𝑄 𝐿 𝐶 )  ∨  𝑄  =  𝐶 ) )  →  ¬  ( 𝑅  ∈  ( 𝑄 𝐿 𝐶 )  ∨  𝑄  =  𝐶 ) ) | 
						
							| 91 | 1 2 3 86 87 88 89 90 | ncolne1 | ⊢ ( ( 𝜑  ∧  ¬  ( 𝑅  ∈  ( 𝑄 𝐿 𝐶 )  ∨  𝑄  =  𝐶 ) )  →  𝑅  ≠  𝑄 ) | 
						
							| 92 | 1 2 3 86 87 88 91 | tglinerflx2 | ⊢ ( ( 𝜑  ∧  ¬  ( 𝑅  ∈  ( 𝑄 𝐿 𝐶 )  ∨  𝑄  =  𝐶 ) )  →  𝑄  ∈  ( 𝑅 𝐿 𝑄 ) ) | 
						
							| 93 | 92 | adantr | ⊢ ( ( ( 𝜑  ∧  ¬  ( 𝑅  ∈  ( 𝑄 𝐿 𝐶 )  ∨  𝑄  =  𝐶 ) )  ∧  𝐵  ∈  ( 𝑅 𝐿 𝑄 ) )  →  𝑄  ∈  ( 𝑅 𝐿 𝑄 ) ) | 
						
							| 94 | 1 3 2 86 88 89 87 90 | ncolcom | ⊢ ( ( 𝜑  ∧  ¬  ( 𝑅  ∈  ( 𝑄 𝐿 𝐶 )  ∨  𝑄  =  𝐶 ) )  →  ¬  ( 𝑅  ∈  ( 𝐶 𝐿 𝑄 )  ∨  𝐶  =  𝑄 ) ) | 
						
							| 95 | 1 3 2 86 89 88 87 94 | ncolrot1 | ⊢ ( ( 𝜑  ∧  ¬  ( 𝑅  ∈  ( 𝑄 𝐿 𝐶 )  ∨  𝑄  =  𝐶 ) )  →  ¬  ( 𝐶  ∈  ( 𝑄 𝐿 𝑅 )  ∨  𝑄  =  𝑅 ) ) | 
						
							| 96 | 1 2 3 86 89 88 87 95 | ncolne1 | ⊢ ( ( 𝜑  ∧  ¬  ( 𝑅  ∈  ( 𝑄 𝐿 𝐶 )  ∨  𝑄  =  𝐶 ) )  →  𝐶  ≠  𝑄 ) | 
						
							| 97 | 96 | adantr | ⊢ ( ( ( 𝜑  ∧  ¬  ( 𝑅  ∈  ( 𝑄 𝐿 𝐶 )  ∨  𝑄  =  𝐶 ) )  ∧  𝐵  ∈  ( 𝑅 𝐿 𝑄 ) )  →  𝐶  ≠  𝑄 ) | 
						
							| 98 | 47 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ¬  ( 𝑅  ∈  ( 𝑄 𝐿 𝐶 )  ∨  𝑄  =  𝐶 ) )  ∧  𝐵  ∈  ( 𝑅 𝐿 𝑄 ) )  →  𝑄  ∈  ( 𝐶 𝐼 𝐵 ) ) | 
						
							| 99 | 1 2 3 80 83 82 77 97 98 | btwnlng3 | ⊢ ( ( ( 𝜑  ∧  ¬  ( 𝑅  ∈  ( 𝑄 𝐿 𝐶 )  ∨  𝑄  =  𝐶 ) )  ∧  𝐵  ∈  ( 𝑅 𝐿 𝑄 ) )  →  𝐵  ∈  ( 𝐶 𝐿 𝑄 ) ) | 
						
							| 100 | 1 2 3 80 83 82 97 | tglinerflx2 | ⊢ ( ( ( 𝜑  ∧  ¬  ( 𝑅  ∈  ( 𝑄 𝐿 𝐶 )  ∨  𝑄  =  𝐶 ) )  ∧  𝐵  ∈  ( 𝑅 𝐿 𝑄 ) )  →  𝑄  ∈  ( 𝐶 𝐿 𝑄 ) ) | 
						
							| 101 | 1 2 3 80 81 82 83 82 84 85 93 99 100 | tglineinteq | ⊢ ( ( ( 𝜑  ∧  ¬  ( 𝑅  ∈  ( 𝑄 𝐿 𝐶 )  ∨  𝑄  =  𝐶 ) )  ∧  𝐵  ∈  ( 𝑅 𝐿 𝑄 ) )  →  𝐵  =  𝑄 ) | 
						
							| 102 | 1 18 2 4 8 6 | tgbtwntriv2 | ⊢ ( 𝜑  →  𝐵  ∈  ( 𝑅 𝐼 𝐵 ) ) | 
						
							| 103 | 102 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ¬  ( 𝑅  ∈  ( 𝑄 𝐿 𝐶 )  ∨  𝑄  =  𝐶 ) )  ∧  𝐵  ∈  ( 𝑅 𝐿 𝑄 ) )  →  𝐵  ∈  ( 𝑅 𝐼 𝐵 ) ) | 
						
							| 104 | 101 103 | eqeltrrd | ⊢ ( ( ( 𝜑  ∧  ¬  ( 𝑅  ∈  ( 𝑄 𝐿 𝐶 )  ∨  𝑄  =  𝐶 ) )  ∧  𝐵  ∈  ( 𝑅 𝐿 𝑄 ) )  →  𝑄  ∈  ( 𝑅 𝐼 𝐵 ) ) | 
						
							| 105 | 79 104 | jca | ⊢ ( ( ( 𝜑  ∧  ¬  ( 𝑅  ∈  ( 𝑄 𝐿 𝐶 )  ∨  𝑄  =  𝐶 ) )  ∧  𝐵  ∈  ( 𝑅 𝐿 𝑄 ) )  →  ( 𝐵  ∈  ( 𝐴 𝐼 𝐵 )  ∧  𝑄  ∈  ( 𝑅 𝐼 𝐵 ) ) ) | 
						
							| 106 | 77 78 105 | rspcedvd | ⊢ ( ( ( 𝜑  ∧  ¬  ( 𝑅  ∈  ( 𝑄 𝐿 𝐶 )  ∨  𝑄  =  𝐶 ) )  ∧  𝐵  ∈  ( 𝑅 𝐿 𝑄 ) )  →  ∃ 𝑥  ∈  𝑃 ( 𝑥  ∈  ( 𝐴 𝐼 𝐵 )  ∧  𝑄  ∈  ( 𝑅 𝐼 𝑥 ) ) ) | 
						
							| 107 |  | eleq1 | ⊢ ( 𝑡  =  𝑥  →  ( 𝑡  ∈  ( 𝑎 𝐼 𝑏 )  ↔  𝑥  ∈  ( 𝑎 𝐼 𝑏 ) ) ) | 
						
							| 108 | 107 | cbvrexvw | ⊢ ( ∃ 𝑡  ∈  ( 𝑅 𝐿 𝑄 ) 𝑡  ∈  ( 𝑎 𝐼 𝑏 )  ↔  ∃ 𝑥  ∈  ( 𝑅 𝐿 𝑄 ) 𝑥  ∈  ( 𝑎 𝐼 𝑏 ) ) | 
						
							| 109 | 108 | anbi2i | ⊢ ( ( ( 𝑎  ∈  ( 𝑃  ∖  ( 𝑅 𝐿 𝑄 ) )  ∧  𝑏  ∈  ( 𝑃  ∖  ( 𝑅 𝐿 𝑄 ) ) )  ∧  ∃ 𝑡  ∈  ( 𝑅 𝐿 𝑄 ) 𝑡  ∈  ( 𝑎 𝐼 𝑏 ) )  ↔  ( ( 𝑎  ∈  ( 𝑃  ∖  ( 𝑅 𝐿 𝑄 ) )  ∧  𝑏  ∈  ( 𝑃  ∖  ( 𝑅 𝐿 𝑄 ) ) )  ∧  ∃ 𝑥  ∈  ( 𝑅 𝐿 𝑄 ) 𝑥  ∈  ( 𝑎 𝐼 𝑏 ) ) ) | 
						
							| 110 | 109 | opabbii | ⊢ { 〈 𝑎 ,  𝑏 〉  ∣  ( ( 𝑎  ∈  ( 𝑃  ∖  ( 𝑅 𝐿 𝑄 ) )  ∧  𝑏  ∈  ( 𝑃  ∖  ( 𝑅 𝐿 𝑄 ) ) )  ∧  ∃ 𝑡  ∈  ( 𝑅 𝐿 𝑄 ) 𝑡  ∈  ( 𝑎 𝐼 𝑏 ) ) }  =  { 〈 𝑎 ,  𝑏 〉  ∣  ( ( 𝑎  ∈  ( 𝑃  ∖  ( 𝑅 𝐿 𝑄 ) )  ∧  𝑏  ∈  ( 𝑃  ∖  ( 𝑅 𝐿 𝑄 ) ) )  ∧  ∃ 𝑥  ∈  ( 𝑅 𝐿 𝑄 ) 𝑥  ∈  ( 𝑎 𝐼 𝑏 ) ) } | 
						
							| 111 | 4 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ¬  ( 𝑅  ∈  ( 𝑄 𝐿 𝐶 )  ∨  𝑄  =  𝐶 ) )  ∧  ¬  𝐵  ∈  ( 𝑅 𝐿 𝑄 ) )  →  𝐺  ∈  TarskiG ) | 
						
							| 112 | 8 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ¬  ( 𝑅  ∈  ( 𝑄 𝐿 𝐶 )  ∨  𝑄  =  𝐶 ) )  ∧  ¬  𝐵  ∈  ( 𝑅 𝐿 𝑄 ) )  →  𝑅  ∈  𝑃 ) | 
						
							| 113 | 9 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ¬  ( 𝑅  ∈  ( 𝑄 𝐿 𝐶 )  ∨  𝑄  =  𝐶 ) )  ∧  ¬  𝐵  ∈  ( 𝑅 𝐿 𝑄 ) )  →  𝑄  ∈  𝑃 ) | 
						
							| 114 | 91 | adantr | ⊢ ( ( ( 𝜑  ∧  ¬  ( 𝑅  ∈  ( 𝑄 𝐿 𝐶 )  ∨  𝑄  =  𝐶 ) )  ∧  ¬  𝐵  ∈  ( 𝑅 𝐿 𝑄 ) )  →  𝑅  ≠  𝑄 ) | 
						
							| 115 | 1 2 3 111 112 113 114 | tgelrnln | ⊢ ( ( ( 𝜑  ∧  ¬  ( 𝑅  ∈  ( 𝑄 𝐿 𝐶 )  ∨  𝑄  =  𝐶 ) )  ∧  ¬  𝐵  ∈  ( 𝑅 𝐿 𝑄 ) )  →  ( 𝑅 𝐿 𝑄 )  ∈  ran  𝐿 ) | 
						
							| 116 |  | eqid | ⊢ ( hlG ‘ 𝐺 )  =  ( hlG ‘ 𝐺 ) | 
						
							| 117 | 7 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ¬  ( 𝑅  ∈  ( 𝑄 𝐿 𝐶 )  ∨  𝑄  =  𝐶 ) )  ∧  ¬  𝐵  ∈  ( 𝑅 𝐿 𝑄 ) )  →  𝐶  ∈  𝑃 ) | 
						
							| 118 | 5 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ¬  ( 𝑅  ∈  ( 𝑄 𝐿 𝐶 )  ∨  𝑄  =  𝐶 ) )  ∧  ¬  𝐵  ∈  ( 𝑅 𝐿 𝑄 ) )  →  𝐴  ∈  𝑃 ) | 
						
							| 119 | 6 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ¬  ( 𝑅  ∈  ( 𝑄 𝐿 𝐶 )  ∨  𝑄  =  𝐶 ) )  ∧  ¬  𝐵  ∈  ( 𝑅 𝐿 𝑄 ) )  →  𝐵  ∈  𝑃 ) | 
						
							| 120 | 92 | adantr | ⊢ ( ( ( 𝜑  ∧  ¬  ( 𝑅  ∈  ( 𝑄 𝐿 𝐶 )  ∨  𝑄  =  𝐶 ) )  ∧  ¬  𝐵  ∈  ( 𝑅 𝐿 𝑄 ) )  →  𝑄  ∈  ( 𝑅 𝐿 𝑄 ) ) | 
						
							| 121 | 1 3 2 86 88 89 87 90 | ncolrot2 | ⊢ ( ( 𝜑  ∧  ¬  ( 𝑅  ∈  ( 𝑄 𝐿 𝐶 )  ∨  𝑄  =  𝐶 ) )  →  ¬  ( 𝐶  ∈  ( 𝑅 𝐿 𝑄 )  ∨  𝑅  =  𝑄 ) ) | 
						
							| 122 |  | pm2.45 | ⊢ ( ¬  ( 𝐶  ∈  ( 𝑅 𝐿 𝑄 )  ∨  𝑅  =  𝑄 )  →  ¬  𝐶  ∈  ( 𝑅 𝐿 𝑄 ) ) | 
						
							| 123 | 121 122 | syl | ⊢ ( ( 𝜑  ∧  ¬  ( 𝑅  ∈  ( 𝑄 𝐿 𝐶 )  ∨  𝑄  =  𝐶 ) )  →  ¬  𝐶  ∈  ( 𝑅 𝐿 𝑄 ) ) | 
						
							| 124 | 123 | adantr | ⊢ ( ( ( 𝜑  ∧  ¬  ( 𝑅  ∈  ( 𝑄 𝐿 𝐶 )  ∨  𝑄  =  𝐶 ) )  ∧  ¬  𝐵  ∈  ( 𝑅 𝐿 𝑄 ) )  →  ¬  𝐶  ∈  ( 𝑅 𝐿 𝑄 ) ) | 
						
							| 125 |  | simpr | ⊢ ( ( ( 𝜑  ∧  ¬  ( 𝑅  ∈  ( 𝑄 𝐿 𝐶 )  ∨  𝑄  =  𝐶 ) )  ∧  ¬  𝐵  ∈  ( 𝑅 𝐿 𝑄 ) )  →  ¬  𝐵  ∈  ( 𝑅 𝐿 𝑄 ) ) | 
						
							| 126 | 47 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ¬  ( 𝑅  ∈  ( 𝑄 𝐿 𝐶 )  ∨  𝑄  =  𝐶 ) )  ∧  ¬  𝐵  ∈  ( 𝑅 𝐿 𝑄 ) )  →  𝑄  ∈  ( 𝐶 𝐼 𝐵 ) ) | 
						
							| 127 | 1 18 2 110 117 119 120 124 125 126 | islnoppd | ⊢ ( ( ( 𝜑  ∧  ¬  ( 𝑅  ∈  ( 𝑄 𝐿 𝐶 )  ∨  𝑄  =  𝐶 ) )  ∧  ¬  𝐵  ∈  ( 𝑅 𝐿 𝑄 ) )  →  𝐶 { 〈 𝑎 ,  𝑏 〉  ∣  ( ( 𝑎  ∈  ( 𝑃  ∖  ( 𝑅 𝐿 𝑄 ) )  ∧  𝑏  ∈  ( 𝑃  ∖  ( 𝑅 𝐿 𝑄 ) ) )  ∧  ∃ 𝑡  ∈  ( 𝑅 𝐿 𝑄 ) 𝑡  ∈  ( 𝑎 𝐼 𝑏 ) ) } 𝐵 ) | 
						
							| 128 | 1 2 3 86 87 88 91 | tglinerflx1 | ⊢ ( ( 𝜑  ∧  ¬  ( 𝑅  ∈  ( 𝑄 𝐿 𝐶 )  ∨  𝑄  =  𝐶 ) )  →  𝑅  ∈  ( 𝑅 𝐿 𝑄 ) ) | 
						
							| 129 | 128 | adantr | ⊢ ( ( ( 𝜑  ∧  ¬  ( 𝑅  ∈  ( 𝑄 𝐿 𝐶 )  ∨  𝑄  =  𝐶 ) )  ∧  ¬  𝐵  ∈  ( 𝑅 𝐿 𝑄 ) )  →  𝑅  ∈  ( 𝑅 𝐿 𝑄 ) ) | 
						
							| 130 | 26 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ¬  ( 𝑅  ∈  ( 𝑄 𝐿 𝐶 )  ∨  𝑄  =  𝐶 ) )  ∧  ¬  𝐵  ∈  ( 𝑅 𝐿 𝑄 ) )  →  𝐶  ∈  ( 𝑅 𝐼 𝐴 ) ) | 
						
							| 131 | 1 2 3 86 89 87 88 121 | ncolne1 | ⊢ ( ( 𝜑  ∧  ¬  ( 𝑅  ∈  ( 𝑄 𝐿 𝐶 )  ∨  𝑄  =  𝐶 ) )  →  𝐶  ≠  𝑅 ) | 
						
							| 132 | 131 | adantr | ⊢ ( ( ( 𝜑  ∧  ¬  ( 𝑅  ∈  ( 𝑄 𝐿 𝐶 )  ∨  𝑄  =  𝐶 ) )  ∧  ¬  𝐵  ∈  ( 𝑅 𝐿 𝑄 ) )  →  𝐶  ≠  𝑅 ) | 
						
							| 133 | 1 18 2 111 112 117 118 130 132 | tgbtwnne | ⊢ ( ( ( 𝜑  ∧  ¬  ( 𝑅  ∈  ( 𝑄 𝐿 𝐶 )  ∨  𝑄  =  𝐶 ) )  ∧  ¬  𝐵  ∈  ( 𝑅 𝐿 𝑄 ) )  →  𝑅  ≠  𝐴 ) | 
						
							| 134 | 1 2 116 112 118 117 111 118 130 133 132 | btwnhl1 | ⊢ ( ( ( 𝜑  ∧  ¬  ( 𝑅  ∈  ( 𝑄 𝐿 𝐶 )  ∨  𝑄  =  𝐶 ) )  ∧  ¬  𝐵  ∈  ( 𝑅 𝐿 𝑄 ) )  →  𝐶 ( ( hlG ‘ 𝐺 ) ‘ 𝑅 ) 𝐴 ) | 
						
							| 135 | 1 18 2 110 3 115 111 116 117 118 119 127 129 134 | opphl | ⊢ ( ( ( 𝜑  ∧  ¬  ( 𝑅  ∈  ( 𝑄 𝐿 𝐶 )  ∨  𝑄  =  𝐶 ) )  ∧  ¬  𝐵  ∈  ( 𝑅 𝐿 𝑄 ) )  →  𝐴 { 〈 𝑎 ,  𝑏 〉  ∣  ( ( 𝑎  ∈  ( 𝑃  ∖  ( 𝑅 𝐿 𝑄 ) )  ∧  𝑏  ∈  ( 𝑃  ∖  ( 𝑅 𝐿 𝑄 ) ) )  ∧  ∃ 𝑡  ∈  ( 𝑅 𝐿 𝑄 ) 𝑡  ∈  ( 𝑎 𝐼 𝑏 ) ) } 𝐵 ) | 
						
							| 136 | 1 18 2 110 118 119 | islnopp | ⊢ ( ( ( 𝜑  ∧  ¬  ( 𝑅  ∈  ( 𝑄 𝐿 𝐶 )  ∨  𝑄  =  𝐶 ) )  ∧  ¬  𝐵  ∈  ( 𝑅 𝐿 𝑄 ) )  →  ( 𝐴 { 〈 𝑎 ,  𝑏 〉  ∣  ( ( 𝑎  ∈  ( 𝑃  ∖  ( 𝑅 𝐿 𝑄 ) )  ∧  𝑏  ∈  ( 𝑃  ∖  ( 𝑅 𝐿 𝑄 ) ) )  ∧  ∃ 𝑡  ∈  ( 𝑅 𝐿 𝑄 ) 𝑡  ∈  ( 𝑎 𝐼 𝑏 ) ) } 𝐵  ↔  ( ( ¬  𝐴  ∈  ( 𝑅 𝐿 𝑄 )  ∧  ¬  𝐵  ∈  ( 𝑅 𝐿 𝑄 ) )  ∧  ∃ 𝑥  ∈  ( 𝑅 𝐿 𝑄 ) 𝑥  ∈  ( 𝐴 𝐼 𝐵 ) ) ) ) | 
						
							| 137 | 135 136 | mpbid | ⊢ ( ( ( 𝜑  ∧  ¬  ( 𝑅  ∈  ( 𝑄 𝐿 𝐶 )  ∨  𝑄  =  𝐶 ) )  ∧  ¬  𝐵  ∈  ( 𝑅 𝐿 𝑄 ) )  →  ( ( ¬  𝐴  ∈  ( 𝑅 𝐿 𝑄 )  ∧  ¬  𝐵  ∈  ( 𝑅 𝐿 𝑄 ) )  ∧  ∃ 𝑥  ∈  ( 𝑅 𝐿 𝑄 ) 𝑥  ∈  ( 𝐴 𝐼 𝐵 ) ) ) | 
						
							| 138 | 137 | simprd | ⊢ ( ( ( 𝜑  ∧  ¬  ( 𝑅  ∈  ( 𝑄 𝐿 𝐶 )  ∨  𝑄  =  𝐶 ) )  ∧  ¬  𝐵  ∈  ( 𝑅 𝐿 𝑄 ) )  →  ∃ 𝑥  ∈  ( 𝑅 𝐿 𝑄 ) 𝑥  ∈  ( 𝐴 𝐼 𝐵 ) ) | 
						
							| 139 | 111 | ad2antrr | ⊢ ( ( ( ( ( 𝜑  ∧  ¬  ( 𝑅  ∈  ( 𝑄 𝐿 𝐶 )  ∨  𝑄  =  𝐶 ) )  ∧  ¬  𝐵  ∈  ( 𝑅 𝐿 𝑄 ) )  ∧  𝑥  ∈  ( 𝑅 𝐿 𝑄 ) )  ∧  𝑥  ∈  ( 𝐴 𝐼 𝐵 ) )  →  𝐺  ∈  TarskiG ) | 
						
							| 140 | 115 | ad2antrr | ⊢ ( ( ( ( ( 𝜑  ∧  ¬  ( 𝑅  ∈  ( 𝑄 𝐿 𝐶 )  ∨  𝑄  =  𝐶 ) )  ∧  ¬  𝐵  ∈  ( 𝑅 𝐿 𝑄 ) )  ∧  𝑥  ∈  ( 𝑅 𝐿 𝑄 ) )  ∧  𝑥  ∈  ( 𝐴 𝐼 𝐵 ) )  →  ( 𝑅 𝐿 𝑄 )  ∈  ran  𝐿 ) | 
						
							| 141 |  | simplr | ⊢ ( ( ( ( ( 𝜑  ∧  ¬  ( 𝑅  ∈  ( 𝑄 𝐿 𝐶 )  ∨  𝑄  =  𝐶 ) )  ∧  ¬  𝐵  ∈  ( 𝑅 𝐿 𝑄 ) )  ∧  𝑥  ∈  ( 𝑅 𝐿 𝑄 ) )  ∧  𝑥  ∈  ( 𝐴 𝐼 𝐵 ) )  →  𝑥  ∈  ( 𝑅 𝐿 𝑄 ) ) | 
						
							| 142 | 1 3 2 139 140 141 | tglnpt | ⊢ ( ( ( ( ( 𝜑  ∧  ¬  ( 𝑅  ∈  ( 𝑄 𝐿 𝐶 )  ∨  𝑄  =  𝐶 ) )  ∧  ¬  𝐵  ∈  ( 𝑅 𝐿 𝑄 ) )  ∧  𝑥  ∈  ( 𝑅 𝐿 𝑄 ) )  ∧  𝑥  ∈  ( 𝐴 𝐼 𝐵 ) )  →  𝑥  ∈  𝑃 ) | 
						
							| 143 |  | simpr | ⊢ ( ( ( ( ( 𝜑  ∧  ¬  ( 𝑅  ∈  ( 𝑄 𝐿 𝐶 )  ∨  𝑄  =  𝐶 ) )  ∧  ¬  𝐵  ∈  ( 𝑅 𝐿 𝑄 ) )  ∧  𝑥  ∈  ( 𝑅 𝐿 𝑄 ) )  ∧  𝑥  ∈  ( 𝐴 𝐼 𝐵 ) )  →  𝑥  ∈  ( 𝐴 𝐼 𝐵 ) ) | 
						
							| 144 | 139 | ad2antrr | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  ¬  ( 𝑅  ∈  ( 𝑄 𝐿 𝐶 )  ∨  𝑄  =  𝐶 ) )  ∧  ¬  𝐵  ∈  ( 𝑅 𝐿 𝑄 ) )  ∧  𝑥  ∈  ( 𝑅 𝐿 𝑄 ) )  ∧  𝑥  ∈  ( 𝐴 𝐼 𝐵 ) )  ∧  𝑡  ∈  𝑃 )  ∧  ( 𝑡  ∈  ( 𝑥 𝐼 𝑅 )  ∧  𝑡  ∈  ( 𝐶 𝐼 𝐵 ) ) )  →  𝐺  ∈  TarskiG ) | 
						
							| 145 | 87 | ad3antrrr | ⊢ ( ( ( ( ( 𝜑  ∧  ¬  ( 𝑅  ∈  ( 𝑄 𝐿 𝐶 )  ∨  𝑄  =  𝐶 ) )  ∧  ¬  𝐵  ∈  ( 𝑅 𝐿 𝑄 ) )  ∧  𝑥  ∈  ( 𝑅 𝐿 𝑄 ) )  ∧  𝑥  ∈  ( 𝐴 𝐼 𝐵 ) )  →  𝑅  ∈  𝑃 ) | 
						
							| 146 | 145 | ad2antrr | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  ¬  ( 𝑅  ∈  ( 𝑄 𝐿 𝐶 )  ∨  𝑄  =  𝐶 ) )  ∧  ¬  𝐵  ∈  ( 𝑅 𝐿 𝑄 ) )  ∧  𝑥  ∈  ( 𝑅 𝐿 𝑄 ) )  ∧  𝑥  ∈  ( 𝐴 𝐼 𝐵 ) )  ∧  𝑡  ∈  𝑃 )  ∧  ( 𝑡  ∈  ( 𝑥 𝐼 𝑅 )  ∧  𝑡  ∈  ( 𝐶 𝐼 𝐵 ) ) )  →  𝑅  ∈  𝑃 ) | 
						
							| 147 | 88 | ad5antr | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  ¬  ( 𝑅  ∈  ( 𝑄 𝐿 𝐶 )  ∨  𝑄  =  𝐶 ) )  ∧  ¬  𝐵  ∈  ( 𝑅 𝐿 𝑄 ) )  ∧  𝑥  ∈  ( 𝑅 𝐿 𝑄 ) )  ∧  𝑥  ∈  ( 𝐴 𝐼 𝐵 ) )  ∧  𝑡  ∈  𝑃 )  ∧  ( 𝑡  ∈  ( 𝑥 𝐼 𝑅 )  ∧  𝑡  ∈  ( 𝐶 𝐼 𝐵 ) ) )  →  𝑄  ∈  𝑃 ) | 
						
							| 148 | 117 | ad2antrr | ⊢ ( ( ( ( ( 𝜑  ∧  ¬  ( 𝑅  ∈  ( 𝑄 𝐿 𝐶 )  ∨  𝑄  =  𝐶 ) )  ∧  ¬  𝐵  ∈  ( 𝑅 𝐿 𝑄 ) )  ∧  𝑥  ∈  ( 𝑅 𝐿 𝑄 ) )  ∧  𝑥  ∈  ( 𝐴 𝐼 𝐵 ) )  →  𝐶  ∈  𝑃 ) | 
						
							| 149 | 148 | ad2antrr | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  ¬  ( 𝑅  ∈  ( 𝑄 𝐿 𝐶 )  ∨  𝑄  =  𝐶 ) )  ∧  ¬  𝐵  ∈  ( 𝑅 𝐿 𝑄 ) )  ∧  𝑥  ∈  ( 𝑅 𝐿 𝑄 ) )  ∧  𝑥  ∈  ( 𝐴 𝐼 𝐵 ) )  ∧  𝑡  ∈  𝑃 )  ∧  ( 𝑡  ∈  ( 𝑥 𝐼 𝑅 )  ∧  𝑡  ∈  ( 𝐶 𝐼 𝐵 ) ) )  →  𝐶  ∈  𝑃 ) | 
						
							| 150 | 90 | ad5antr | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  ¬  ( 𝑅  ∈  ( 𝑄 𝐿 𝐶 )  ∨  𝑄  =  𝐶 ) )  ∧  ¬  𝐵  ∈  ( 𝑅 𝐿 𝑄 ) )  ∧  𝑥  ∈  ( 𝑅 𝐿 𝑄 ) )  ∧  𝑥  ∈  ( 𝐴 𝐼 𝐵 ) )  ∧  𝑡  ∈  𝑃 )  ∧  ( 𝑡  ∈  ( 𝑥 𝐼 𝑅 )  ∧  𝑡  ∈  ( 𝐶 𝐼 𝐵 ) ) )  →  ¬  ( 𝑅  ∈  ( 𝑄 𝐿 𝐶 )  ∨  𝑄  =  𝐶 ) ) | 
						
							| 151 |  | simplr | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  ¬  ( 𝑅  ∈  ( 𝑄 𝐿 𝐶 )  ∨  𝑄  =  𝐶 ) )  ∧  ¬  𝐵  ∈  ( 𝑅 𝐿 𝑄 ) )  ∧  𝑥  ∈  ( 𝑅 𝐿 𝑄 ) )  ∧  𝑥  ∈  ( 𝐴 𝐼 𝐵 ) )  ∧  𝑡  ∈  𝑃 )  ∧  ( 𝑡  ∈  ( 𝑥 𝐼 𝑅 )  ∧  𝑡  ∈  ( 𝐶 𝐼 𝐵 ) ) )  →  𝑡  ∈  𝑃 ) | 
						
							| 152 | 114 | ad4antr | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  ¬  ( 𝑅  ∈  ( 𝑄 𝐿 𝐶 )  ∨  𝑄  =  𝐶 ) )  ∧  ¬  𝐵  ∈  ( 𝑅 𝐿 𝑄 ) )  ∧  𝑥  ∈  ( 𝑅 𝐿 𝑄 ) )  ∧  𝑥  ∈  ( 𝐴 𝐼 𝐵 ) )  ∧  𝑡  ∈  𝑃 )  ∧  ( 𝑡  ∈  ( 𝑥 𝐼 𝑅 )  ∧  𝑡  ∈  ( 𝐶 𝐼 𝐵 ) ) )  →  𝑅  ≠  𝑄 ) | 
						
							| 153 | 142 | ad2antrr | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  ¬  ( 𝑅  ∈  ( 𝑄 𝐿 𝐶 )  ∨  𝑄  =  𝐶 ) )  ∧  ¬  𝐵  ∈  ( 𝑅 𝐿 𝑄 ) )  ∧  𝑥  ∈  ( 𝑅 𝐿 𝑄 ) )  ∧  𝑥  ∈  ( 𝐴 𝐼 𝐵 ) )  ∧  𝑡  ∈  𝑃 )  ∧  ( 𝑡  ∈  ( 𝑥 𝐼 𝑅 )  ∧  𝑡  ∈  ( 𝐶 𝐼 𝐵 ) ) )  →  𝑥  ∈  𝑃 ) | 
						
							| 154 | 91 | necomd | ⊢ ( ( 𝜑  ∧  ¬  ( 𝑅  ∈  ( 𝑄 𝐿 𝐶 )  ∨  𝑄  =  𝐶 ) )  →  𝑄  ≠  𝑅 ) | 
						
							| 155 | 154 | ad5antr | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  ¬  ( 𝑅  ∈  ( 𝑄 𝐿 𝐶 )  ∨  𝑄  =  𝐶 ) )  ∧  ¬  𝐵  ∈  ( 𝑅 𝐿 𝑄 ) )  ∧  𝑥  ∈  ( 𝑅 𝐿 𝑄 ) )  ∧  𝑥  ∈  ( 𝐴 𝐼 𝐵 ) )  ∧  𝑡  ∈  𝑃 )  ∧  ( 𝑡  ∈  ( 𝑥 𝐼 𝑅 )  ∧  𝑡  ∈  ( 𝐶 𝐼 𝐵 ) ) )  →  𝑄  ≠  𝑅 ) | 
						
							| 156 | 141 | ad2antrr | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  ¬  ( 𝑅  ∈  ( 𝑄 𝐿 𝐶 )  ∨  𝑄  =  𝐶 ) )  ∧  ¬  𝐵  ∈  ( 𝑅 𝐿 𝑄 ) )  ∧  𝑥  ∈  ( 𝑅 𝐿 𝑄 ) )  ∧  𝑥  ∈  ( 𝐴 𝐼 𝐵 ) )  ∧  𝑡  ∈  𝑃 )  ∧  ( 𝑡  ∈  ( 𝑥 𝐼 𝑅 )  ∧  𝑡  ∈  ( 𝐶 𝐼 𝐵 ) ) )  →  𝑥  ∈  ( 𝑅 𝐿 𝑄 ) ) | 
						
							| 157 | 1 2 3 144 147 146 153 155 156 | lncom | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  ¬  ( 𝑅  ∈  ( 𝑄 𝐿 𝐶 )  ∨  𝑄  =  𝐶 ) )  ∧  ¬  𝐵  ∈  ( 𝑅 𝐿 𝑄 ) )  ∧  𝑥  ∈  ( 𝑅 𝐿 𝑄 ) )  ∧  𝑥  ∈  ( 𝐴 𝐼 𝐵 ) )  ∧  𝑡  ∈  𝑃 )  ∧  ( 𝑡  ∈  ( 𝑥 𝐼 𝑅 )  ∧  𝑡  ∈  ( 𝐶 𝐼 𝐵 ) ) )  →  𝑥  ∈  ( 𝑄 𝐿 𝑅 ) ) | 
						
							| 158 |  | simprl | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  ¬  ( 𝑅  ∈  ( 𝑄 𝐿 𝐶 )  ∨  𝑄  =  𝐶 ) )  ∧  ¬  𝐵  ∈  ( 𝑅 𝐿 𝑄 ) )  ∧  𝑥  ∈  ( 𝑅 𝐿 𝑄 ) )  ∧  𝑥  ∈  ( 𝐴 𝐼 𝐵 ) )  ∧  𝑡  ∈  𝑃 )  ∧  ( 𝑡  ∈  ( 𝑥 𝐼 𝑅 )  ∧  𝑡  ∈  ( 𝐶 𝐼 𝐵 ) ) )  →  𝑡  ∈  ( 𝑥 𝐼 𝑅 ) ) | 
						
							| 159 | 1 2 3 144 153 147 146 151 157 158 | coltr3 | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  ¬  ( 𝑅  ∈  ( 𝑄 𝐿 𝐶 )  ∨  𝑄  =  𝐶 ) )  ∧  ¬  𝐵  ∈  ( 𝑅 𝐿 𝑄 ) )  ∧  𝑥  ∈  ( 𝑅 𝐿 𝑄 ) )  ∧  𝑥  ∈  ( 𝐴 𝐼 𝐵 ) )  ∧  𝑡  ∈  𝑃 )  ∧  ( 𝑡  ∈  ( 𝑥 𝐼 𝑅 )  ∧  𝑡  ∈  ( 𝐶 𝐼 𝐵 ) ) )  →  𝑡  ∈  ( 𝑄 𝐿 𝑅 ) ) | 
						
							| 160 | 1 2 3 144 146 147 151 152 159 | lncom | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  ¬  ( 𝑅  ∈  ( 𝑄 𝐿 𝐶 )  ∨  𝑄  =  𝐶 ) )  ∧  ¬  𝐵  ∈  ( 𝑅 𝐿 𝑄 ) )  ∧  𝑥  ∈  ( 𝑅 𝐿 𝑄 ) )  ∧  𝑥  ∈  ( 𝐴 𝐼 𝐵 ) )  ∧  𝑡  ∈  𝑃 )  ∧  ( 𝑡  ∈  ( 𝑥 𝐼 𝑅 )  ∧  𝑡  ∈  ( 𝐶 𝐼 𝐵 ) ) )  →  𝑡  ∈  ( 𝑅 𝐿 𝑄 ) ) | 
						
							| 161 | 92 | ad5antr | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  ¬  ( 𝑅  ∈  ( 𝑄 𝐿 𝐶 )  ∨  𝑄  =  𝐶 ) )  ∧  ¬  𝐵  ∈  ( 𝑅 𝐿 𝑄 ) )  ∧  𝑥  ∈  ( 𝑅 𝐿 𝑄 ) )  ∧  𝑥  ∈  ( 𝐴 𝐼 𝐵 ) )  ∧  𝑡  ∈  𝑃 )  ∧  ( 𝑡  ∈  ( 𝑥 𝐼 𝑅 )  ∧  𝑡  ∈  ( 𝐶 𝐼 𝐵 ) ) )  →  𝑄  ∈  ( 𝑅 𝐿 𝑄 ) ) | 
						
							| 162 | 96 | ad5antr | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  ¬  ( 𝑅  ∈  ( 𝑄 𝐿 𝐶 )  ∨  𝑄  =  𝐶 ) )  ∧  ¬  𝐵  ∈  ( 𝑅 𝐿 𝑄 ) )  ∧  𝑥  ∈  ( 𝑅 𝐿 𝑄 ) )  ∧  𝑥  ∈  ( 𝐴 𝐼 𝐵 ) )  ∧  𝑡  ∈  𝑃 )  ∧  ( 𝑡  ∈  ( 𝑥 𝐼 𝑅 )  ∧  𝑡  ∈  ( 𝐶 𝐼 𝐵 ) ) )  →  𝐶  ≠  𝑄 ) | 
						
							| 163 | 119 | ad2antrr | ⊢ ( ( ( ( ( 𝜑  ∧  ¬  ( 𝑅  ∈  ( 𝑄 𝐿 𝐶 )  ∨  𝑄  =  𝐶 ) )  ∧  ¬  𝐵  ∈  ( 𝑅 𝐿 𝑄 ) )  ∧  𝑥  ∈  ( 𝑅 𝐿 𝑄 ) )  ∧  𝑥  ∈  ( 𝐴 𝐼 𝐵 ) )  →  𝐵  ∈  𝑃 ) | 
						
							| 164 | 163 | ad2antrr | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  ¬  ( 𝑅  ∈  ( 𝑄 𝐿 𝐶 )  ∨  𝑄  =  𝐶 ) )  ∧  ¬  𝐵  ∈  ( 𝑅 𝐿 𝑄 ) )  ∧  𝑥  ∈  ( 𝑅 𝐿 𝑄 ) )  ∧  𝑥  ∈  ( 𝐴 𝐼 𝐵 ) )  ∧  𝑡  ∈  𝑃 )  ∧  ( 𝑡  ∈  ( 𝑥 𝐼 𝑅 )  ∧  𝑡  ∈  ( 𝐶 𝐼 𝐵 ) ) )  →  𝐵  ∈  𝑃 ) | 
						
							| 165 | 6 | adantr | ⊢ ( ( 𝜑  ∧  ¬  ( 𝑅  ∈  ( 𝑄 𝐿 𝐶 )  ∨  𝑄  =  𝐶 ) )  →  𝐵  ∈  𝑃 ) | 
						
							| 166 | 96 | necomd | ⊢ ( ( 𝜑  ∧  ¬  ( 𝑅  ∈  ( 𝑄 𝐿 𝐶 )  ∨  𝑄  =  𝐶 ) )  →  𝑄  ≠  𝐶 ) | 
						
							| 167 | 11 | adantr | ⊢ ( ( 𝜑  ∧  ¬  ( 𝑅  ∈  ( 𝑄 𝐿 𝐶 )  ∨  𝑄  =  𝐶 ) )  →  𝑄  ∈  ( 𝐵 𝐼 𝐶 ) ) | 
						
							| 168 | 1 2 3 86 88 89 165 166 167 | btwnlng2 | ⊢ ( ( 𝜑  ∧  ¬  ( 𝑅  ∈  ( 𝑄 𝐿 𝐶 )  ∨  𝑄  =  𝐶 ) )  →  𝐵  ∈  ( 𝑄 𝐿 𝐶 ) ) | 
						
							| 169 | 168 | ad5antr | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  ¬  ( 𝑅  ∈  ( 𝑄 𝐿 𝐶 )  ∨  𝑄  =  𝐶 ) )  ∧  ¬  𝐵  ∈  ( 𝑅 𝐿 𝑄 ) )  ∧  𝑥  ∈  ( 𝑅 𝐿 𝑄 ) )  ∧  𝑥  ∈  ( 𝐴 𝐼 𝐵 ) )  ∧  𝑡  ∈  𝑃 )  ∧  ( 𝑡  ∈  ( 𝑥 𝐼 𝑅 )  ∧  𝑡  ∈  ( 𝐶 𝐼 𝐵 ) ) )  →  𝐵  ∈  ( 𝑄 𝐿 𝐶 ) ) | 
						
							| 170 |  | simprr | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  ¬  ( 𝑅  ∈  ( 𝑄 𝐿 𝐶 )  ∨  𝑄  =  𝐶 ) )  ∧  ¬  𝐵  ∈  ( 𝑅 𝐿 𝑄 ) )  ∧  𝑥  ∈  ( 𝑅 𝐿 𝑄 ) )  ∧  𝑥  ∈  ( 𝐴 𝐼 𝐵 ) )  ∧  𝑡  ∈  𝑃 )  ∧  ( 𝑡  ∈  ( 𝑥 𝐼 𝑅 )  ∧  𝑡  ∈  ( 𝐶 𝐼 𝐵 ) ) )  →  𝑡  ∈  ( 𝐶 𝐼 𝐵 ) ) | 
						
							| 171 | 1 18 2 144 149 151 164 170 | tgbtwncom | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  ¬  ( 𝑅  ∈  ( 𝑄 𝐿 𝐶 )  ∨  𝑄  =  𝐶 ) )  ∧  ¬  𝐵  ∈  ( 𝑅 𝐿 𝑄 ) )  ∧  𝑥  ∈  ( 𝑅 𝐿 𝑄 ) )  ∧  𝑥  ∈  ( 𝐴 𝐼 𝐵 ) )  ∧  𝑡  ∈  𝑃 )  ∧  ( 𝑡  ∈  ( 𝑥 𝐼 𝑅 )  ∧  𝑡  ∈  ( 𝐶 𝐼 𝐵 ) ) )  →  𝑡  ∈  ( 𝐵 𝐼 𝐶 ) ) | 
						
							| 172 | 1 2 3 144 164 147 149 151 169 171 | coltr3 | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  ¬  ( 𝑅  ∈  ( 𝑄 𝐿 𝐶 )  ∨  𝑄  =  𝐶 ) )  ∧  ¬  𝐵  ∈  ( 𝑅 𝐿 𝑄 ) )  ∧  𝑥  ∈  ( 𝑅 𝐿 𝑄 ) )  ∧  𝑥  ∈  ( 𝐴 𝐼 𝐵 ) )  ∧  𝑡  ∈  𝑃 )  ∧  ( 𝑡  ∈  ( 𝑥 𝐼 𝑅 )  ∧  𝑡  ∈  ( 𝐶 𝐼 𝐵 ) ) )  →  𝑡  ∈  ( 𝑄 𝐿 𝐶 ) ) | 
						
							| 173 | 1 2 3 144 149 147 151 162 172 | lncom | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  ¬  ( 𝑅  ∈  ( 𝑄 𝐿 𝐶 )  ∨  𝑄  =  𝐶 ) )  ∧  ¬  𝐵  ∈  ( 𝑅 𝐿 𝑄 ) )  ∧  𝑥  ∈  ( 𝑅 𝐿 𝑄 ) )  ∧  𝑥  ∈  ( 𝐴 𝐼 𝐵 ) )  ∧  𝑡  ∈  𝑃 )  ∧  ( 𝑡  ∈  ( 𝑥 𝐼 𝑅 )  ∧  𝑡  ∈  ( 𝐶 𝐼 𝐵 ) ) )  →  𝑡  ∈  ( 𝐶 𝐿 𝑄 ) ) | 
						
							| 174 | 1 2 3 86 89 88 96 | tglinerflx2 | ⊢ ( ( 𝜑  ∧  ¬  ( 𝑅  ∈  ( 𝑄 𝐿 𝐶 )  ∨  𝑄  =  𝐶 ) )  →  𝑄  ∈  ( 𝐶 𝐿 𝑄 ) ) | 
						
							| 175 | 174 | ad5antr | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  ¬  ( 𝑅  ∈  ( 𝑄 𝐿 𝐶 )  ∨  𝑄  =  𝐶 ) )  ∧  ¬  𝐵  ∈  ( 𝑅 𝐿 𝑄 ) )  ∧  𝑥  ∈  ( 𝑅 𝐿 𝑄 ) )  ∧  𝑥  ∈  ( 𝐴 𝐼 𝐵 ) )  ∧  𝑡  ∈  𝑃 )  ∧  ( 𝑡  ∈  ( 𝑥 𝐼 𝑅 )  ∧  𝑡  ∈  ( 𝐶 𝐼 𝐵 ) ) )  →  𝑄  ∈  ( 𝐶 𝐿 𝑄 ) ) | 
						
							| 176 | 1 2 3 144 146 147 149 147 150 160 161 173 175 | tglineinteq | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  ¬  ( 𝑅  ∈  ( 𝑄 𝐿 𝐶 )  ∨  𝑄  =  𝐶 ) )  ∧  ¬  𝐵  ∈  ( 𝑅 𝐿 𝑄 ) )  ∧  𝑥  ∈  ( 𝑅 𝐿 𝑄 ) )  ∧  𝑥  ∈  ( 𝐴 𝐼 𝐵 ) )  ∧  𝑡  ∈  𝑃 )  ∧  ( 𝑡  ∈  ( 𝑥 𝐼 𝑅 )  ∧  𝑡  ∈  ( 𝐶 𝐼 𝐵 ) ) )  →  𝑡  =  𝑄 ) | 
						
							| 177 | 1 18 2 144 153 151 146 158 | tgbtwncom | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  ¬  ( 𝑅  ∈  ( 𝑄 𝐿 𝐶 )  ∨  𝑄  =  𝐶 ) )  ∧  ¬  𝐵  ∈  ( 𝑅 𝐿 𝑄 ) )  ∧  𝑥  ∈  ( 𝑅 𝐿 𝑄 ) )  ∧  𝑥  ∈  ( 𝐴 𝐼 𝐵 ) )  ∧  𝑡  ∈  𝑃 )  ∧  ( 𝑡  ∈  ( 𝑥 𝐼 𝑅 )  ∧  𝑡  ∈  ( 𝐶 𝐼 𝐵 ) ) )  →  𝑡  ∈  ( 𝑅 𝐼 𝑥 ) ) | 
						
							| 178 | 176 177 | eqeltrrd | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  ¬  ( 𝑅  ∈  ( 𝑄 𝐿 𝐶 )  ∨  𝑄  =  𝐶 ) )  ∧  ¬  𝐵  ∈  ( 𝑅 𝐿 𝑄 ) )  ∧  𝑥  ∈  ( 𝑅 𝐿 𝑄 ) )  ∧  𝑥  ∈  ( 𝐴 𝐼 𝐵 ) )  ∧  𝑡  ∈  𝑃 )  ∧  ( 𝑡  ∈  ( 𝑥 𝐼 𝑅 )  ∧  𝑡  ∈  ( 𝐶 𝐼 𝐵 ) ) )  →  𝑄  ∈  ( 𝑅 𝐼 𝑥 ) ) | 
						
							| 179 | 118 | ad2antrr | ⊢ ( ( ( ( ( 𝜑  ∧  ¬  ( 𝑅  ∈  ( 𝑄 𝐿 𝐶 )  ∨  𝑄  =  𝐶 ) )  ∧  ¬  𝐵  ∈  ( 𝑅 𝐿 𝑄 ) )  ∧  𝑥  ∈  ( 𝑅 𝐿 𝑄 ) )  ∧  𝑥  ∈  ( 𝐴 𝐼 𝐵 ) )  →  𝐴  ∈  𝑃 ) | 
						
							| 180 | 1 18 2 139 179 142 163 143 | tgbtwncom | ⊢ ( ( ( ( ( 𝜑  ∧  ¬  ( 𝑅  ∈  ( 𝑄 𝐿 𝐶 )  ∨  𝑄  =  𝐶 ) )  ∧  ¬  𝐵  ∈  ( 𝑅 𝐿 𝑄 ) )  ∧  𝑥  ∈  ( 𝑅 𝐿 𝑄 ) )  ∧  𝑥  ∈  ( 𝐴 𝐼 𝐵 ) )  →  𝑥  ∈  ( 𝐵 𝐼 𝐴 ) ) | 
						
							| 181 | 26 | ad4antr | ⊢ ( ( ( ( ( 𝜑  ∧  ¬  ( 𝑅  ∈  ( 𝑄 𝐿 𝐶 )  ∨  𝑄  =  𝐶 ) )  ∧  ¬  𝐵  ∈  ( 𝑅 𝐿 𝑄 ) )  ∧  𝑥  ∈  ( 𝑅 𝐿 𝑄 ) )  ∧  𝑥  ∈  ( 𝐴 𝐼 𝐵 ) )  →  𝐶  ∈  ( 𝑅 𝐼 𝐴 ) ) | 
						
							| 182 | 1 18 2 139 163 145 179 142 148 180 181 | axtgpasch | ⊢ ( ( ( ( ( 𝜑  ∧  ¬  ( 𝑅  ∈  ( 𝑄 𝐿 𝐶 )  ∨  𝑄  =  𝐶 ) )  ∧  ¬  𝐵  ∈  ( 𝑅 𝐿 𝑄 ) )  ∧  𝑥  ∈  ( 𝑅 𝐿 𝑄 ) )  ∧  𝑥  ∈  ( 𝐴 𝐼 𝐵 ) )  →  ∃ 𝑡  ∈  𝑃 ( 𝑡  ∈  ( 𝑥 𝐼 𝑅 )  ∧  𝑡  ∈  ( 𝐶 𝐼 𝐵 ) ) ) | 
						
							| 183 | 178 182 | r19.29a | ⊢ ( ( ( ( ( 𝜑  ∧  ¬  ( 𝑅  ∈  ( 𝑄 𝐿 𝐶 )  ∨  𝑄  =  𝐶 ) )  ∧  ¬  𝐵  ∈  ( 𝑅 𝐿 𝑄 ) )  ∧  𝑥  ∈  ( 𝑅 𝐿 𝑄 ) )  ∧  𝑥  ∈  ( 𝐴 𝐼 𝐵 ) )  →  𝑄  ∈  ( 𝑅 𝐼 𝑥 ) ) | 
						
							| 184 | 142 143 183 | jca32 | ⊢ ( ( ( ( ( 𝜑  ∧  ¬  ( 𝑅  ∈  ( 𝑄 𝐿 𝐶 )  ∨  𝑄  =  𝐶 ) )  ∧  ¬  𝐵  ∈  ( 𝑅 𝐿 𝑄 ) )  ∧  𝑥  ∈  ( 𝑅 𝐿 𝑄 ) )  ∧  𝑥  ∈  ( 𝐴 𝐼 𝐵 ) )  →  ( 𝑥  ∈  𝑃  ∧  ( 𝑥  ∈  ( 𝐴 𝐼 𝐵 )  ∧  𝑄  ∈  ( 𝑅 𝐼 𝑥 ) ) ) ) | 
						
							| 185 | 184 | expl | ⊢ ( ( ( 𝜑  ∧  ¬  ( 𝑅  ∈  ( 𝑄 𝐿 𝐶 )  ∨  𝑄  =  𝐶 ) )  ∧  ¬  𝐵  ∈  ( 𝑅 𝐿 𝑄 ) )  →  ( ( 𝑥  ∈  ( 𝑅 𝐿 𝑄 )  ∧  𝑥  ∈  ( 𝐴 𝐼 𝐵 ) )  →  ( 𝑥  ∈  𝑃  ∧  ( 𝑥  ∈  ( 𝐴 𝐼 𝐵 )  ∧  𝑄  ∈  ( 𝑅 𝐼 𝑥 ) ) ) ) ) | 
						
							| 186 | 185 | reximdv2 | ⊢ ( ( ( 𝜑  ∧  ¬  ( 𝑅  ∈  ( 𝑄 𝐿 𝐶 )  ∨  𝑄  =  𝐶 ) )  ∧  ¬  𝐵  ∈  ( 𝑅 𝐿 𝑄 ) )  →  ( ∃ 𝑥  ∈  ( 𝑅 𝐿 𝑄 ) 𝑥  ∈  ( 𝐴 𝐼 𝐵 )  →  ∃ 𝑥  ∈  𝑃 ( 𝑥  ∈  ( 𝐴 𝐼 𝐵 )  ∧  𝑄  ∈  ( 𝑅 𝐼 𝑥 ) ) ) ) | 
						
							| 187 | 138 186 | mpd | ⊢ ( ( ( 𝜑  ∧  ¬  ( 𝑅  ∈  ( 𝑄 𝐿 𝐶 )  ∨  𝑄  =  𝐶 ) )  ∧  ¬  𝐵  ∈  ( 𝑅 𝐿 𝑄 ) )  →  ∃ 𝑥  ∈  𝑃 ( 𝑥  ∈  ( 𝐴 𝐼 𝐵 )  ∧  𝑄  ∈  ( 𝑅 𝐼 𝑥 ) ) ) | 
						
							| 188 | 106 187 | pm2.61dan | ⊢ ( ( 𝜑  ∧  ¬  ( 𝑅  ∈  ( 𝑄 𝐿 𝐶 )  ∨  𝑄  =  𝐶 ) )  →  ∃ 𝑥  ∈  𝑃 ( 𝑥  ∈  ( 𝐴 𝐼 𝐵 )  ∧  𝑄  ∈  ( 𝑅 𝐼 𝑥 ) ) ) | 
						
							| 189 | 76 188 | pm2.61dan | ⊢ ( 𝜑  →  ∃ 𝑥  ∈  𝑃 ( 𝑥  ∈  ( 𝐴 𝐼 𝐵 )  ∧  𝑄  ∈  ( 𝑅 𝐼 𝑥 ) ) ) |