| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isinag.p |
|
| 2 |
|
isinag.i |
|
| 3 |
|
isinag.k |
|
| 4 |
|
isinag.x |
|
| 5 |
|
isinag.a |
|
| 6 |
|
isinag.b |
|
| 7 |
|
isinag.c |
|
| 8 |
|
inagflat.g |
|
| 9 |
|
inagswap.1 |
|
| 10 |
|
inaghl.d |
|
| 11 |
|
inaghl.f |
|
| 12 |
|
inaghl.y |
|
| 13 |
|
inaghl.1 |
|
| 14 |
|
inaghl.2 |
|
| 15 |
|
inaghl.3 |
|
| 16 |
1 2 3 10 5 6 8 13
|
hlne1 |
|
| 17 |
1 2 3 11 7 6 8 14
|
hlne1 |
|
| 18 |
1 2 3 12 4 6 8 15
|
hlne1 |
|
| 19 |
16 17 18
|
3jca |
|
| 20 |
6
|
adantr |
|
| 21 |
|
eleq1 |
|
| 22 |
|
eqeq1 |
|
| 23 |
|
breq1 |
|
| 24 |
22 23
|
orbi12d |
|
| 25 |
21 24
|
anbi12d |
|
| 26 |
25
|
adantl |
|
| 27 |
5
|
adantr |
|
| 28 |
10
|
adantr |
|
| 29 |
11
|
adantr |
|
| 30 |
8
|
adantr |
|
| 31 |
1 2 3 10 5 6 8 13
|
hlcomd |
|
| 32 |
31
|
adantr |
|
| 33 |
|
eqid |
|
| 34 |
7
|
adantr |
|
| 35 |
1 2 3 11 7 6 8 14
|
hlcomd |
|
| 36 |
35
|
adantr |
|
| 37 |
|
simpr |
|
| 38 |
1 33 2 30 27 20 34 37
|
tgbtwncom |
|
| 39 |
1 2 3 34 29 27 30 20 36 38
|
btwnhl |
|
| 40 |
1 33 2 30 29 20 27 39
|
tgbtwncom |
|
| 41 |
1 2 3 27 28 29 30 20 32 40
|
btwnhl |
|
| 42 |
|
eqidd |
|
| 43 |
42
|
orcd |
|
| 44 |
41 43
|
jca |
|
| 45 |
20 26 44
|
rspcedvd |
|
| 46 |
|
simpllr |
|
| 47 |
|
simpr |
|
| 48 |
47
|
eleq1d |
|
| 49 |
47
|
eqeq1d |
|
| 50 |
47
|
breq1d |
|
| 51 |
49 50
|
orbi12d |
|
| 52 |
48 51
|
anbi12d |
|
| 53 |
|
simpr |
|
| 54 |
5
|
ad4antr |
|
| 55 |
10
|
ad4antr |
|
| 56 |
11
|
ad4antr |
|
| 57 |
8
|
ad4antr |
|
| 58 |
6
|
ad4antr |
|
| 59 |
31
|
ad4antr |
|
| 60 |
7
|
ad4antr |
|
| 61 |
35
|
ad4antr |
|
| 62 |
|
simplr |
|
| 63 |
1 33 2 57 54 46 60 62
|
tgbtwncom |
|
| 64 |
53 63
|
eqeltrrd |
|
| 65 |
1 2 3 60 56 54 57 58 61 64
|
btwnhl |
|
| 66 |
1 33 2 57 56 58 54 65
|
tgbtwncom |
|
| 67 |
1 2 3 54 55 56 57 58 59 66
|
btwnhl |
|
| 68 |
53 67
|
eqeltrd |
|
| 69 |
53
|
orcd |
|
| 70 |
68 69
|
jca |
|
| 71 |
46 52 70
|
rspcedvd |
|
| 72 |
8
|
ad4antr |
|
| 73 |
72
|
ad2antrr |
|
| 74 |
|
simplr |
|
| 75 |
6
|
ad4antr |
|
| 76 |
75
|
ad2antrr |
|
| 77 |
7
|
ad4antr |
|
| 78 |
77
|
ad2antrr |
|
| 79 |
10
|
ad4antr |
|
| 80 |
79
|
ad2antrr |
|
| 81 |
11
|
ad6antr |
|
| 82 |
|
simpllr |
|
| 83 |
82
|
ad2antrr |
|
| 84 |
|
simprl |
|
| 85 |
1 2 3 83 74 76 73 84
|
hlne2 |
|
| 86 |
35
|
ad6antr |
|
| 87 |
|
simprr |
|
| 88 |
1 33 2 73 78 74 80 87
|
tgbtwncom |
|
| 89 |
1 2 3 73 74 76 78 80 81 85 86 88
|
hlpasch |
|
| 90 |
|
simprr |
|
| 91 |
|
simplr |
|
| 92 |
74
|
ad2antrr |
|
| 93 |
12
|
ad8antr |
|
| 94 |
73
|
ad2antrr |
|
| 95 |
76
|
ad2antrr |
|
| 96 |
|
simprl |
|
| 97 |
1 2 3 92 91 95 94 96
|
hlcomd |
|
| 98 |
82
|
ad4antr |
|
| 99 |
4
|
ad8antr |
|
| 100 |
15
|
ad8antr |
|
| 101 |
|
simp-5r |
|
| 102 |
1 2 3 98 99 95 94 101
|
hlcomd |
|
| 103 |
1 2 3 93 99 98 94 95 100 102
|
hltr |
|
| 104 |
|
simpllr |
|
| 105 |
104
|
simpld |
|
| 106 |
1 2 3 93 98 92 94 95 103 105
|
hltr |
|
| 107 |
1 2 3 93 92 95 94 106
|
hlcomd |
|
| 108 |
1 2 3 91 92 93 94 95 97 107
|
hltr |
|
| 109 |
108
|
olcd |
|
| 110 |
90 109
|
jca |
|
| 111 |
110
|
ex |
|
| 112 |
111
|
reximdva |
|
| 113 |
89 112
|
mpd |
|
| 114 |
5
|
ad4antr |
|
| 115 |
4
|
ad4antr |
|
| 116 |
|
simpr |
|
| 117 |
1 2 3 82 115 75 72 116
|
hlne1 |
|
| 118 |
31
|
ad4antr |
|
| 119 |
|
simplr |
|
| 120 |
1 33 2 72 114 82 77 119
|
tgbtwncom |
|
| 121 |
1 2 3 72 82 75 114 77 79 117 118 120
|
hlpasch |
|
| 122 |
113 121
|
r19.29a |
|
| 123 |
71 122
|
jaodan |
|
| 124 |
123
|
anasss |
|
| 125 |
1 2 3 4 5 6 7 8
|
isinag |
|
| 126 |
9 125
|
mpbid |
|
| 127 |
126
|
simprd |
|
| 128 |
127
|
adantr |
|
| 129 |
124 128
|
r19.29a |
|
| 130 |
45 129
|
pm2.61dan |
|
| 131 |
1 2 3 12 10 6 11 8
|
isinag |
|
| 132 |
19 130 131
|
mpbir2and |
|