Metamath Proof Explorer


Theorem iooiinioc

Description: A left-open, right-closed interval expressed as the indexed intersection of open intervals. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses iooiinioc.1 φA*
iooiinioc.2 φB
Assertion iooiinioc φnAB+1n=AB

Proof

Step Hyp Ref Expression
1 iooiinioc.1 φA*
2 iooiinioc.2 φB
3 1 adantr φxnAB+1nA*
4 2 adantr φxnAB+1nB
5 4 rexrd φxnAB+1nB*
6 1nn 1
7 ioossre AB+11
8 oveq2 n=11n=11
9 8 oveq2d n=1B+1n=B+11
10 9 oveq2d n=1AB+1n=AB+11
11 10 sseq1d n=1AB+1nAB+11
12 11 rspcev 1AB+11nAB+1n
13 6 7 12 mp2an nAB+1n
14 iinss nAB+1nnAB+1n
15 13 14 ax-mp nAB+1n
16 15 a1i φxnAB+1nnAB+1n
17 simpr φxnAB+1nxnAB+1n
18 16 17 sseldd φxnAB+1nx
19 18 rexrd φxnAB+1nx*
20 1red φ1
21 ax-1ne0 10
22 21 a1i φ10
23 20 20 22 redivcld φ11
24 2 23 readdcld φB+11
25 24 rexrd φB+11*
26 25 adantr φxnAB+1nB+11*
27 id xnAB+1nxnAB+1n
28 6 a1i xnAB+1n1
29 10 eleq2d n=1xAB+1nxAB+11
30 27 28 29 eliind xnAB+1nxAB+11
31 30 adantl φxnAB+1nxAB+11
32 ioogtlb A*B+11*xAB+11A<x
33 3 26 31 32 syl3anc φxnAB+1nA<x
34 nfv nφ
35 nfcv _nx
36 nfii1 _nnAB+1n
37 35 36 nfel nxnAB+1n
38 34 37 nfan nφxnAB+1n
39 simpll φxnAB+1nnφ
40 iinss2 nnAB+1nAB+1n
41 40 adantl xnAB+1nnnAB+1nAB+1n
42 simpl xnAB+1nnxnAB+1n
43 41 42 sseldd xnAB+1nnxAB+1n
44 43 adantll φxnAB+1nnxAB+1n
45 simpr φxnAB+1nnn
46 elioore xAB+1nx
47 46 adantr xAB+1nnx
48 47 adantll φxAB+1nnx
49 2 adantr φnB
50 nnrecre n1n
51 50 adantl φn1n
52 49 51 readdcld φnB+1n
53 52 adantlr φxAB+1nnB+1n
54 1 adantr φnA*
55 54 adantlr φxAB+1nnA*
56 52 rexrd φnB+1n*
57 56 adantlr φxAB+1nnB+1n*
58 simplr φxAB+1nnxAB+1n
59 iooltub A*B+1n*xAB+1nx<B+1n
60 55 57 58 59 syl3anc φxAB+1nnx<B+1n
61 48 53 60 ltled φxAB+1nnxB+1n
62 39 44 45 61 syl21anc φxnAB+1nnxB+1n
63 62 ex φxnAB+1nnxB+1n
64 38 63 ralrimi φxnAB+1nnxB+1n
65 38 19 4 xrralrecnnle φxnAB+1nxBnxB+1n
66 64 65 mpbird φxnAB+1nxB
67 3 5 19 33 66 eliocd φxnAB+1nxAB
68 67 ralrimiva φxnAB+1nxAB
69 dfss3 nAB+1nABxnAB+1nxAB
70 68 69 sylibr φnAB+1nAB
71 1 xrleidd φAA
72 71 adantr φnAA
73 1rp 1+
74 73 a1i n1+
75 nnrp nn+
76 74 75 rpdivcld n1n+
77 76 adantl φn1n+
78 49 77 ltaddrpd φnB<B+1n
79 iocssioo A*B+1n*AAB<B+1nABAB+1n
80 54 56 72 78 79 syl22anc φnABAB+1n
81 80 ralrimiva φnABAB+1n
82 ssiin ABnAB+1nnABAB+1n
83 81 82 sylibr φABnAB+1n
84 70 83 eqssd φnAB+1n=AB