Metamath Proof Explorer


Theorem iooshift

Description: An open interval shifted by a real number. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses iooshift.1 φA
iooshift.2 φB
iooshift.3 φT
Assertion iooshift φA+TB+T=w|zABw=z+T

Proof

Step Hyp Ref Expression
1 iooshift.1 φA
2 iooshift.2 φB
3 iooshift.3 φT
4 eqeq1 w=xw=z+Tx=z+T
5 4 rexbidv w=xzABw=z+TzABx=z+T
6 5 elrab xw|zABw=z+TxzABx=z+T
7 simprr φxzABx=z+TzABx=z+T
8 nfv zφ
9 nfv zx
10 nfre1 zzABx=z+T
11 9 10 nfan zxzABx=z+T
12 8 11 nfan zφxzABx=z+T
13 nfv zxA+TB+T
14 simp3 φzABx=z+Tx=z+T
15 1 3 readdcld φA+T
16 15 rexrd φA+T*
17 16 adantr φzABA+T*
18 2 3 readdcld φB+T
19 18 rexrd φB+T*
20 19 adantr φzABB+T*
21 ioossre AB
22 21 a1i φAB
23 22 sselda φzABz
24 3 adantr φzABT
25 23 24 readdcld φzABz+T
26 1 adantr φzABA
27 26 rexrd φzABA*
28 2 adantr φzABB
29 28 rexrd φzABB*
30 simpr φzABzAB
31 ioogtlb A*B*zABA<z
32 27 29 30 31 syl3anc φzABA<z
33 26 23 24 32 ltadd1dd φzABA+T<z+T
34 iooltub A*B*zABz<B
35 27 29 30 34 syl3anc φzABz<B
36 23 28 24 35 ltadd1dd φzABz+T<B+T
37 17 20 25 33 36 eliood φzABz+TA+TB+T
38 37 3adant3 φzABx=z+Tz+TA+TB+T
39 14 38 eqeltrd φzABx=z+TxA+TB+T
40 39 3exp φzABx=z+TxA+TB+T
41 40 adantr φxzABx=z+TzABx=z+TxA+TB+T
42 12 13 41 rexlimd φxzABx=z+TzABx=z+TxA+TB+T
43 7 42 mpd φxzABx=z+TxA+TB+T
44 6 43 sylan2b φxw|zABw=z+TxA+TB+T
45 elioore xA+TB+Tx
46 45 adantl φxA+TB+Tx
47 46 recnd φxA+TB+Tx
48 1 rexrd φA*
49 48 adantr φxA+TB+TA*
50 2 rexrd φB*
51 50 adantr φxA+TB+TB*
52 3 adantr φxA+TB+TT
53 46 52 resubcld φxA+TB+TxT
54 1 recnd φA
55 3 recnd φT
56 54 55 pncand φA+T-T=A
57 56 eqcomd φA=A+T-T
58 57 adantr φxA+TB+TA=A+T-T
59 15 adantr φxA+TB+TA+T
60 16 adantr φxA+TB+TA+T*
61 19 adantr φxA+TB+TB+T*
62 simpr φxA+TB+TxA+TB+T
63 ioogtlb A+T*B+T*xA+TB+TA+T<x
64 60 61 62 63 syl3anc φxA+TB+TA+T<x
65 59 46 52 64 ltsub1dd φxA+TB+TA+T-T<xT
66 58 65 eqbrtrd φxA+TB+TA<xT
67 18 adantr φxA+TB+TB+T
68 iooltub A+T*B+T*xA+TB+Tx<B+T
69 60 61 62 68 syl3anc φxA+TB+Tx<B+T
70 46 67 52 69 ltsub1dd φxA+TB+TxT<B+T-T
71 2 recnd φB
72 71 55 pncand φB+T-T=B
73 72 adantr φxA+TB+TB+T-T=B
74 70 73 breqtrd φxA+TB+TxT<B
75 49 51 53 66 74 eliood φxA+TB+TxTAB
76 55 adantr φxA+TB+TT
77 47 76 npcand φxA+TB+Tx-T+T=x
78 77 eqcomd φxA+TB+Tx=x-T+T
79 oveq1 z=xTz+T=x-T+T
80 79 rspceeqv xTABx=x-T+TzABx=z+T
81 75 78 80 syl2anc φxA+TB+TzABx=z+T
82 47 81 6 sylanbrc φxA+TB+Txw|zABw=z+T
83 44 82 impbida φxw|zABw=z+TxA+TB+T
84 83 eqrdv φw|zABw=z+T=A+TB+T
85 84 eqcomd φA+TB+T=w|zABw=z+T