| Step | Hyp | Ref | Expression | 
						
							| 1 |  | irngval.o |  | 
						
							| 2 |  | irngval.u |  | 
						
							| 3 |  | irngval.b |  | 
						
							| 4 |  | irngval.0 |  | 
						
							| 5 |  | elirng.r |  | 
						
							| 6 |  | elirng.s |  | 
						
							| 7 |  | irngss.1 |  | 
						
							| 8 |  | simpl |  | 
						
							| 9 | 3 | subrgss |  | 
						
							| 10 | 6 9 | syl |  | 
						
							| 11 | 10 | sselda |  | 
						
							| 12 |  | eqid |  | 
						
							| 13 |  | eqid |  | 
						
							| 14 |  | eqid |  | 
						
							| 15 | 6 | adantr |  | 
						
							| 16 |  | eqid |  | 
						
							| 17 |  | eqid |  | 
						
							| 18 | 17 15 2 13 14 | subrgvr1cl |  | 
						
							| 19 |  | eqid |  | 
						
							| 20 |  | simpr |  | 
						
							| 21 | 19 2 12 13 14 15 20 | asclply1subcl |  | 
						
							| 22 | 12 2 13 14 15 16 18 21 | ressply1sub |  | 
						
							| 23 | 12 2 13 14 | subrgply1 |  | 
						
							| 24 |  | subrgsubg |  | 
						
							| 25 | 6 23 24 | 3syl |  | 
						
							| 26 | 25 | adantr |  | 
						
							| 27 |  | eqid |  | 
						
							| 28 |  | eqid |  | 
						
							| 29 | 27 16 28 | subgsub |  | 
						
							| 30 | 26 18 21 29 | syl3anc |  | 
						
							| 31 | 22 30 | eqtr4d |  | 
						
							| 32 | 2 | subrgcrng |  | 
						
							| 33 | 5 6 32 | syl2anc |  | 
						
							| 34 | 13 | ply1crng |  | 
						
							| 35 | 33 34 | syl |  | 
						
							| 36 | 35 | adantr |  | 
						
							| 37 | 36 | crnggrpd |  | 
						
							| 38 |  | eqid |  | 
						
							| 39 | 14 38 | grpsubcl |  | 
						
							| 40 | 37 18 21 39 | syl3anc |  | 
						
							| 41 | 31 40 | eqeltrrd |  | 
						
							| 42 |  | eqid |  | 
						
							| 43 |  | eqid |  | 
						
							| 44 |  | eqid |  | 
						
							| 45 | 7 | adantr |  | 
						
							| 46 | 5 | adantr |  | 
						
							| 47 |  | eqid |  | 
						
							| 48 |  | eqid |  | 
						
							| 49 | 12 42 3 17 27 19 43 44 45 46 11 47 48 4 | ply1remlem |  | 
						
							| 50 | 49 | simp1d |  | 
						
							| 51 | 41 50 | elind |  | 
						
							| 52 |  | eqid |  | 
						
							| 53 | 12 2 13 14 6 47 52 | ressply1mon1p |  | 
						
							| 54 | 53 | adantr |  | 
						
							| 55 | 51 54 | eleqtrrd |  | 
						
							| 56 |  | fveq2 |  | 
						
							| 57 | 56 | fveq1d |  | 
						
							| 58 | 57 | eqeq1d |  | 
						
							| 59 | 58 | adantl |  | 
						
							| 60 | 1 3 13 2 14 44 46 15 | ressply1evl |  | 
						
							| 61 | 60 | fveq1d |  | 
						
							| 62 | 41 | fvresd |  | 
						
							| 63 | 61 62 | eqtrd |  | 
						
							| 64 | 63 | fveq1d |  | 
						
							| 65 |  | eqid |  | 
						
							| 66 |  | eqid |  | 
						
							| 67 | 3 | fvexi |  | 
						
							| 68 | 67 | a1i |  | 
						
							| 69 | 44 12 65 3 | evl1rhm |  | 
						
							| 70 | 42 66 | rhmf |  | 
						
							| 71 | 5 69 70 | 3syl |  | 
						
							| 72 | 71 | adantr |  | 
						
							| 73 |  | eqid |  | 
						
							| 74 |  | eqid |  | 
						
							| 75 | 12 2 13 14 6 73 74 42 | ressply1bas2 |  | 
						
							| 76 | 75 | adantr |  | 
						
							| 77 | 41 76 | eleqtrd |  | 
						
							| 78 | 77 | elin2d |  | 
						
							| 79 | 72 78 | ffvelcdmd |  | 
						
							| 80 | 65 3 66 45 68 79 | pwselbas |  | 
						
							| 81 | 80 | ffnd |  | 
						
							| 82 |  | vsnid |  | 
						
							| 83 | 49 | simp3d |  | 
						
							| 84 | 82 83 | eleqtrrid |  | 
						
							| 85 |  | fniniseg |  | 
						
							| 86 | 85 | simplbda |  | 
						
							| 87 | 81 84 86 | syl2anc |  | 
						
							| 88 | 64 87 | eqtrd |  | 
						
							| 89 | 55 59 88 | rspcedvd |  | 
						
							| 90 | 1 2 3 4 5 6 | elirng |  | 
						
							| 91 | 90 | biimpar |  | 
						
							| 92 | 8 11 89 91 | syl12anc |  | 
						
							| 93 | 92 | ex |  | 
						
							| 94 | 93 | ssrdv |  |