Metamath Proof Explorer


Theorem iscmet3lem1

Description: Lemma for iscmet3 . (Contributed by Mario Carneiro, 15-Oct-2015)

Ref Expression
Hypotheses iscmet3.1 Z=M
iscmet3.2 J=MetOpenD
iscmet3.3 φM
iscmet3.4 φDMetX
iscmet3.6 φF:ZX
iscmet3.9 φkuSkvSkuDv<12k
iscmet3.10 φkZnMkFkSn
Assertion iscmet3lem1 φFCauD

Proof

Step Hyp Ref Expression
1 iscmet3.1 Z=M
2 iscmet3.2 J=MetOpenD
3 iscmet3.3 φM
4 iscmet3.4 φDMetX
5 iscmet3.6 φF:ZX
6 iscmet3.9 φkuSkvSkuDv<12k
7 iscmet3.10 φkZnMkFkSn
8 1 iscmet3lem3 Mr+jZkj12k<r
9 3 8 sylan φr+jZkj12k<r
10 1 r19.2uz jZkj12k<rkZ12k<r
11 9 10 syl φr+kZ12k<r
12 fveq2 n=kSn=Sk
13 12 eleq2d n=kFkSnFkSk
14 7 ad2antrr φr+kZjkkZnMkFkSn
15 simpl kZjkkZ
16 15 adantl φr+kZjkkZ
17 rsp kZnMkFkSnkZnMkFkSn
18 14 16 17 sylc φr+kZjknMkFkSn
19 16 1 eleqtrdi φr+kZjkkM
20 eluzfz2 kMkMk
21 19 20 syl φr+kZjkkMk
22 13 18 21 rspcdva φr+kZjkFkSk
23 12 eleq2d n=kFjSnFjSk
24 oveq2 k=jMk=Mj
25 fveq2 k=jFk=Fj
26 25 eleq1d k=jFkSnFjSn
27 24 26 raleqbidv k=jnMkFkSnnMjFjSn
28 1 uztrn2 kZjkjZ
29 28 adantl φr+kZjkjZ
30 27 14 29 rspcdva φr+kZjknMjFjSn
31 simprr φr+kZjkjk
32 elfzuzb kMjkMjk
33 19 31 32 sylanbrc φr+kZjkkMj
34 23 30 33 rspcdva φr+kZjkFjSk
35 6 ad2antrr φr+kZjkkuSkvSkuDv<12k
36 eluzelz kMk
37 36 1 eleq2s kZk
38 37 ad2antrl φr+kZjkk
39 rsp kuSkvSkuDv<12kkuSkvSkuDv<12k
40 35 38 39 sylc φr+kZjkuSkvSkuDv<12k
41 oveq1 u=FkuDv=FkDv
42 41 breq1d u=FkuDv<12kFkDv<12k
43 oveq2 v=FjFkDv=FkDFj
44 43 breq1d v=FjFkDv<12kFkDFj<12k
45 42 44 rspc2va FkSkFjSkuSkvSkuDv<12kFkDFj<12k
46 22 34 40 45 syl21anc φr+kZjkFkDFj<12k
47 4 ad2antrr φr+kZjkDMetX
48 5 adantr φr+F:ZX
49 ffvelcdm F:ZXkZFkX
50 48 15 49 syl2an φr+kZjkFkX
51 ffvelcdm F:ZXjZFjX
52 48 28 51 syl2an φr+kZjkFjX
53 metcl DMetXFkXFjXFkDFj
54 47 50 52 53 syl3anc φr+kZjkFkDFj
55 1rp 1+
56 rphalfcl 1+12+
57 55 56 ax-mp 12+
58 rpexpcl 12+k12k+
59 57 38 58 sylancr φr+kZjk12k+
60 59 rpred φr+kZjk12k
61 rpre r+r
62 61 ad2antlr φr+kZjkr
63 lttr FkDFj12krFkDFj<12k12k<rFkDFj<r
64 54 60 62 63 syl3anc φr+kZjkFkDFj<12k12k<rFkDFj<r
65 46 64 mpand φr+kZjk12k<rFkDFj<r
66 65 anassrs φr+kZjk12k<rFkDFj<r
67 66 ralrimdva φr+kZ12k<rjkFkDFj<r
68 67 reximdva φr+kZ12k<rkZjkFkDFj<r
69 11 68 mpd φr+kZjkFkDFj<r
70 69 ralrimiva φr+kZjkFkDFj<r
71 metxmet DMetXD∞MetX
72 4 71 syl φD∞MetX
73 eqidd φjZFj=Fj
74 eqidd φkZFk=Fk
75 1 72 3 73 74 5 iscauf φFCauDr+kZjkFkDFj<r
76 70 75 mpbird φFCauD