Step |
Hyp |
Ref |
Expression |
1 |
|
islocfin.1 |
|
2 |
|
islocfin.2 |
|
3 |
|
df-locfin |
|
4 |
3
|
mptrcl |
|
5 |
|
eqimss2 |
|
6 |
|
sspwuni |
|
7 |
5 6
|
sylibr |
|
8 |
|
velpw |
|
9 |
7 8
|
sylibr |
|
10 |
9
|
adantr |
|
11 |
10
|
abssi |
|
12 |
1
|
topopn |
|
13 |
|
pwexg |
|
14 |
|
pwexg |
|
15 |
12 13 14
|
3syl |
|
16 |
|
ssexg |
|
17 |
11 15 16
|
sylancr |
|
18 |
|
unieq |
|
19 |
18 1
|
eqtr4di |
|
20 |
19
|
eqeq1d |
|
21 |
|
rexeq |
|
22 |
19 21
|
raleqbidv |
|
23 |
20 22
|
anbi12d |
|
24 |
23
|
abbidv |
|
25 |
24 3
|
fvmptg |
|
26 |
17 25
|
mpdan |
|
27 |
26
|
eleq2d |
|
28 |
|
elex |
|
29 |
28
|
adantl |
|
30 |
|
simpr |
|
31 |
30 2
|
eqtrdi |
|
32 |
12
|
adantr |
|
33 |
31 32
|
eqeltrrd |
|
34 |
33
|
elexd |
|
35 |
|
uniexb |
|
36 |
34 35
|
sylibr |
|
37 |
36
|
adantrr |
|
38 |
|
unieq |
|
39 |
38 2
|
eqtr4di |
|
40 |
39
|
eqeq2d |
|
41 |
|
rabeq |
|
42 |
41
|
eleq1d |
|
43 |
42
|
anbi2d |
|
44 |
43
|
rexbidv |
|
45 |
44
|
ralbidv |
|
46 |
40 45
|
anbi12d |
|
47 |
46
|
elabg |
|
48 |
29 37 47
|
pm5.21nd |
|
49 |
27 48
|
bitrd |
|
50 |
4 49
|
biadanii |
|
51 |
|
3anass |
|
52 |
50 51
|
bitr4i |
|