Metamath Proof Explorer


Theorem islshpat

Description: Hyperplane properties expressed with subspace sum and an atom. TODO: can proof be shortened? Seems long for a simple variation of islshpsm . (Contributed by NM, 11-Jan-2015)

Ref Expression
Hypotheses islshpat.v V=BaseW
islshpat.s S=LSubSpW
islshpat.p ˙=LSSumW
islshpat.h H=LSHypW
islshpat.a A=LSAtomsW
islshpat.w φWLMod
Assertion islshpat φUHUSUVqAU˙q=V

Proof

Step Hyp Ref Expression
1 islshpat.v V=BaseW
2 islshpat.s S=LSubSpW
3 islshpat.p ˙=LSSumW
4 islshpat.h H=LSHypW
5 islshpat.a A=LSAtomsW
6 islshpat.w φWLMod
7 eqid LSpanW=LSpanW
8 1 7 2 3 4 6 islshpsm φUHUSUVvVU˙LSpanWv=V
9 df-3an USUVvVU˙LSpanWv=VUSUVvVU˙LSpanWv=V
10 r19.42v vVUSUVU˙LSpanWv=VUSUVvVU˙LSpanWv=V
11 9 10 bitr4i USUVvVU˙LSpanWv=VvVUSUVU˙LSpanWv=V
12 df-rex vVUSUVU˙LSpanWv=VvvVUSUVU˙LSpanWv=V
13 simpr φvVUSUVv=0Wv=0W
14 13 sneqd φvVUSUVv=0Wv=0W
15 14 fveq2d φvVUSUVv=0WLSpanWv=LSpanW0W
16 6 ad3antrrr φvVUSUVv=0WWLMod
17 eqid 0W=0W
18 17 7 lspsn0 WLModLSpanW0W=0W
19 16 18 syl φvVUSUVv=0WLSpanW0W=0W
20 15 19 eqtrd φvVUSUVv=0WLSpanWv=0W
21 20 oveq2d φvVUSUVv=0WU˙LSpanWv=U˙0W
22 simplrl φvVUSUVv=0WUS
23 2 lsssubg WLModUSUSubGrpW
24 16 22 23 syl2anc φvVUSUVv=0WUSubGrpW
25 17 3 lsm01 USubGrpWU˙0W=U
26 24 25 syl φvVUSUVv=0WU˙0W=U
27 21 26 eqtrd φvVUSUVv=0WU˙LSpanWv=U
28 simplrr φvVUSUVv=0WUV
29 27 28 eqnetrd φvVUSUVv=0WU˙LSpanWvV
30 29 ex φvVUSUVv=0WU˙LSpanWvV
31 30 necon2d φvVUSUVU˙LSpanWv=Vv0W
32 31 pm4.71rd φvVUSUVU˙LSpanWv=Vv0WU˙LSpanWv=V
33 32 pm5.32da φvVUSUVU˙LSpanWv=VUSUVv0WU˙LSpanWv=V
34 33 pm5.32da φvVUSUVU˙LSpanWv=VvVUSUVv0WU˙LSpanWv=V
35 eldifsn vV0WvVv0W
36 35 anbi1i vV0WUSUVU˙LSpanWv=VvVv0WUSUVU˙LSpanWv=V
37 anass vVv0WUSUVU˙LSpanWv=VvVv0WUSUVU˙LSpanWv=V
38 an12 v0WUSUVU˙LSpanWv=VUSUVv0WU˙LSpanWv=V
39 38 anbi2i vVv0WUSUVU˙LSpanWv=VvVUSUVv0WU˙LSpanWv=V
40 37 39 bitri vVv0WUSUVU˙LSpanWv=VvVUSUVv0WU˙LSpanWv=V
41 36 40 bitr2i vVUSUVv0WU˙LSpanWv=VvV0WUSUVU˙LSpanWv=V
42 34 41 bitrdi φvVUSUVU˙LSpanWv=VvV0WUSUVU˙LSpanWv=V
43 42 exbidv φvvVUSUVU˙LSpanWv=VvvV0WUSUVU˙LSpanWv=V
44 12 43 bitrid φvVUSUVU˙LSpanWv=VvvV0WUSUVU˙LSpanWv=V
45 fvex LSpanWvV
46 45 rexcom4b qvV0WUSUVU˙LSpanWv=Vq=LSpanWvvV0WUSUVU˙LSpanWv=V
47 df-rex vV0WUSUVU˙LSpanWv=VvvV0WUSUVU˙LSpanWv=V
48 46 47 bitr2i vvV0WUSUVU˙LSpanWv=VqvV0WUSUVU˙LSpanWv=Vq=LSpanWv
49 ancom USUVU˙LSpanWv=Vq=LSpanWvq=LSpanWvUSUVU˙LSpanWv=V
50 49 rexbii vV0WUSUVU˙LSpanWv=Vq=LSpanWvvV0Wq=LSpanWvUSUVU˙LSpanWv=V
51 50 exbii qvV0WUSUVU˙LSpanWv=Vq=LSpanWvqvV0Wq=LSpanWvUSUVU˙LSpanWv=V
52 48 51 bitri vvV0WUSUVU˙LSpanWv=VqvV0Wq=LSpanWvUSUVU˙LSpanWv=V
53 44 52 bitrdi φvVUSUVU˙LSpanWv=VqvV0Wq=LSpanWvUSUVU˙LSpanWv=V
54 r19.41v vV0Wq=LSpanWvUSUVU˙q=VvV0Wq=LSpanWvUSUVU˙q=V
55 oveq2 q=LSpanWvU˙q=U˙LSpanWv
56 55 eqeq1d q=LSpanWvU˙q=VU˙LSpanWv=V
57 56 anbi2d q=LSpanWvUSUVU˙q=VUSUVU˙LSpanWv=V
58 57 pm5.32i q=LSpanWvUSUVU˙q=Vq=LSpanWvUSUVU˙LSpanWv=V
59 58 rexbii vV0Wq=LSpanWvUSUVU˙q=VvV0Wq=LSpanWvUSUVU˙LSpanWv=V
60 54 59 bitr3i vV0Wq=LSpanWvUSUVU˙q=VvV0Wq=LSpanWvUSUVU˙LSpanWv=V
61 60 exbii qvV0Wq=LSpanWvUSUVU˙q=VqvV0Wq=LSpanWvUSUVU˙LSpanWv=V
62 53 61 bitr4di φvVUSUVU˙LSpanWv=VqvV0Wq=LSpanWvUSUVU˙q=V
63 1 7 17 5 islsat WLModqAvV0Wq=LSpanWv
64 6 63 syl φqAvV0Wq=LSpanWv
65 64 anbi1d φqAUSUVU˙q=VvV0Wq=LSpanWvUSUVU˙q=V
66 65 exbidv φqqAUSUVU˙q=VqvV0Wq=LSpanWvUSUVU˙q=V
67 62 66 bitr4d φvVUSUVU˙LSpanWv=VqqAUSUVU˙q=V
68 11 67 bitrid φUSUVvVU˙LSpanWv=VqqAUSUVU˙q=V
69 df-3an USUVqAU˙q=VUSUVqAU˙q=V
70 r19.42v qAUSUVU˙q=VUSUVqAU˙q=V
71 df-rex qAUSUVU˙q=VqqAUSUVU˙q=V
72 70 71 bitr3i USUVqAU˙q=VqqAUSUVU˙q=V
73 69 72 bitr2i qqAUSUVU˙q=VUSUVqAU˙q=V
74 68 73 bitrdi φUSUVvVU˙LSpanWv=VUSUVqAU˙q=V
75 8 74 bitrd φUHUSUVqAU˙q=V