Metamath Proof Explorer


Theorem isomgrsym

Description: The isomorphy relation is symmetric for hypergraphs. (Contributed by AV, 11-Nov-2022)

Ref Expression
Assertion isomgrsym AUHGraphBYAIsomGrBBIsomGrA

Proof

Step Hyp Ref Expression
1 eqid VtxA=VtxA
2 eqid VtxB=VtxB
3 eqid iEdgA=iEdgA
4 eqid iEdgB=iEdgB
5 1 2 3 4 isomgr AUHGraphBYAIsomGrBff:VtxA1-1 ontoVtxBgg:domiEdgA1-1 ontodomiEdgBidomiEdgAfiEdgAi=iEdgBgi
6 vex fV
7 6 cnvex f-1V
8 7 a1i AUHGraphBYf:VtxA1-1 ontoVtxBgg:domiEdgA1-1 ontodomiEdgBidomiEdgAfiEdgAi=iEdgBgif-1V
9 f1ocnv f:VtxA1-1 ontoVtxBf-1:VtxB1-1 ontoVtxA
10 9 adantr f:VtxA1-1 ontoVtxBgg:domiEdgA1-1 ontodomiEdgBidomiEdgAfiEdgAi=iEdgBgif-1:VtxB1-1 ontoVtxA
11 10 adantl AUHGraphBYf:VtxA1-1 ontoVtxBgg:domiEdgA1-1 ontodomiEdgBidomiEdgAfiEdgAi=iEdgBgif-1:VtxB1-1 ontoVtxA
12 vex gV
13 12 cnvex g-1V
14 13 a1i AUHGraphBYg:domiEdgA1-1 ontodomiEdgBidomiEdgAfiEdgAi=iEdgBgif:VtxA1-1 ontoVtxBg-1V
15 f1ocnv g:domiEdgA1-1 ontodomiEdgBg-1:domiEdgB1-1 ontodomiEdgA
16 15 adantr g:domiEdgA1-1 ontodomiEdgBidomiEdgAfiEdgAi=iEdgBgig-1:domiEdgB1-1 ontodomiEdgA
17 16 3ad2ant2 AUHGraphBYg:domiEdgA1-1 ontodomiEdgBidomiEdgAfiEdgAi=iEdgBgif:VtxA1-1 ontoVtxBg-1:domiEdgB1-1 ontodomiEdgA
18 f1ocnvdm g:domiEdgA1-1 ontodomiEdgBjdomiEdgBg-1jdomiEdgA
19 18 3ad2antl2 AUHGraphBYg:domiEdgA1-1 ontodomiEdgBf:VtxA1-1 ontoVtxBjdomiEdgBg-1jdomiEdgA
20 fveq2 i=g-1jiEdgAi=iEdgAg-1j
21 20 imaeq2d i=g-1jfiEdgAi=fiEdgAg-1j
22 2fveq3 i=g-1jiEdgBgi=iEdgBgg-1j
23 21 22 eqeq12d i=g-1jfiEdgAi=iEdgBgifiEdgAg-1j=iEdgBgg-1j
24 23 adantl AUHGraphBYg:domiEdgA1-1 ontodomiEdgBf:VtxA1-1 ontoVtxBjdomiEdgBi=g-1jfiEdgAi=iEdgBgifiEdgAg-1j=iEdgBgg-1j
25 19 24 rspcdv AUHGraphBYg:domiEdgA1-1 ontodomiEdgBf:VtxA1-1 ontoVtxBjdomiEdgBidomiEdgAfiEdgAi=iEdgBgifiEdgAg-1j=iEdgBgg-1j
26 f1ocnvfv2 g:domiEdgA1-1 ontodomiEdgBjdomiEdgBgg-1j=j
27 26 3ad2antl2 AUHGraphBYg:domiEdgA1-1 ontodomiEdgBf:VtxA1-1 ontoVtxBjdomiEdgBgg-1j=j
28 27 fveq2d AUHGraphBYg:domiEdgA1-1 ontodomiEdgBf:VtxA1-1 ontoVtxBjdomiEdgBiEdgBgg-1j=iEdgBj
29 28 eqeq2d AUHGraphBYg:domiEdgA1-1 ontodomiEdgBf:VtxA1-1 ontoVtxBjdomiEdgBfiEdgAg-1j=iEdgBgg-1jfiEdgAg-1j=iEdgBj
30 f1of1 f:VtxA1-1 ontoVtxBf:VtxA1-1VtxB
31 30 3ad2ant3 AUHGraphBYg:domiEdgA1-1 ontodomiEdgBf:VtxA1-1 ontoVtxBf:VtxA1-1VtxB
32 31 adantr AUHGraphBYg:domiEdgA1-1 ontodomiEdgBf:VtxA1-1 ontoVtxBjdomiEdgBf:VtxA1-1VtxB
33 simpl1l AUHGraphBYg:domiEdgA1-1 ontodomiEdgBf:VtxA1-1 ontoVtxBjdomiEdgBAUHGraph
34 1 3 uhgrss AUHGraphg-1jdomiEdgAiEdgAg-1jVtxA
35 33 19 34 syl2anc AUHGraphBYg:domiEdgA1-1 ontodomiEdgBf:VtxA1-1 ontoVtxBjdomiEdgBiEdgAg-1jVtxA
36 32 35 jca AUHGraphBYg:domiEdgA1-1 ontodomiEdgBf:VtxA1-1 ontoVtxBjdomiEdgBf:VtxA1-1VtxBiEdgAg-1jVtxA
37 36 adantr AUHGraphBYg:domiEdgA1-1 ontodomiEdgBf:VtxA1-1 ontoVtxBjdomiEdgBfiEdgAg-1j=iEdgBjf:VtxA1-1VtxBiEdgAg-1jVtxA
38 f1imacnv f:VtxA1-1VtxBiEdgAg-1jVtxAf-1fiEdgAg-1j=iEdgAg-1j
39 37 38 syl AUHGraphBYg:domiEdgA1-1 ontodomiEdgBf:VtxA1-1 ontoVtxBjdomiEdgBfiEdgAg-1j=iEdgBjf-1fiEdgAg-1j=iEdgAg-1j
40 imaeq2 fiEdgAg-1j=iEdgBjf-1fiEdgAg-1j=f-1iEdgBj
41 40 adantl AUHGraphBYg:domiEdgA1-1 ontodomiEdgBf:VtxA1-1 ontoVtxBjdomiEdgBfiEdgAg-1j=iEdgBjf-1fiEdgAg-1j=f-1iEdgBj
42 39 41 eqtr3d AUHGraphBYg:domiEdgA1-1 ontodomiEdgBf:VtxA1-1 ontoVtxBjdomiEdgBfiEdgAg-1j=iEdgBjiEdgAg-1j=f-1iEdgBj
43 42 ex AUHGraphBYg:domiEdgA1-1 ontodomiEdgBf:VtxA1-1 ontoVtxBjdomiEdgBfiEdgAg-1j=iEdgBjiEdgAg-1j=f-1iEdgBj
44 29 43 sylbid AUHGraphBYg:domiEdgA1-1 ontodomiEdgBf:VtxA1-1 ontoVtxBjdomiEdgBfiEdgAg-1j=iEdgBgg-1jiEdgAg-1j=f-1iEdgBj
45 25 44 syld AUHGraphBYg:domiEdgA1-1 ontodomiEdgBf:VtxA1-1 ontoVtxBjdomiEdgBidomiEdgAfiEdgAi=iEdgBgiiEdgAg-1j=f-1iEdgBj
46 45 ex AUHGraphBYg:domiEdgA1-1 ontodomiEdgBf:VtxA1-1 ontoVtxBjdomiEdgBidomiEdgAfiEdgAi=iEdgBgiiEdgAg-1j=f-1iEdgBj
47 46 com23 AUHGraphBYg:domiEdgA1-1 ontodomiEdgBf:VtxA1-1 ontoVtxBidomiEdgAfiEdgAi=iEdgBgijdomiEdgBiEdgAg-1j=f-1iEdgBj
48 47 3exp AUHGraphBYg:domiEdgA1-1 ontodomiEdgBf:VtxA1-1 ontoVtxBidomiEdgAfiEdgAi=iEdgBgijdomiEdgBiEdgAg-1j=f-1iEdgBj
49 48 com34 AUHGraphBYg:domiEdgA1-1 ontodomiEdgBidomiEdgAfiEdgAi=iEdgBgif:VtxA1-1 ontoVtxBjdomiEdgBiEdgAg-1j=f-1iEdgBj
50 49 impd AUHGraphBYg:domiEdgA1-1 ontodomiEdgBidomiEdgAfiEdgAi=iEdgBgif:VtxA1-1 ontoVtxBjdomiEdgBiEdgAg-1j=f-1iEdgBj
51 50 3imp1 AUHGraphBYg:domiEdgA1-1 ontodomiEdgBidomiEdgAfiEdgAi=iEdgBgif:VtxA1-1 ontoVtxBjdomiEdgBiEdgAg-1j=f-1iEdgBj
52 51 eqcomd AUHGraphBYg:domiEdgA1-1 ontodomiEdgBidomiEdgAfiEdgAi=iEdgBgif:VtxA1-1 ontoVtxBjdomiEdgBf-1iEdgBj=iEdgAg-1j
53 52 ralrimiva AUHGraphBYg:domiEdgA1-1 ontodomiEdgBidomiEdgAfiEdgAi=iEdgBgif:VtxA1-1 ontoVtxBjdomiEdgBf-1iEdgBj=iEdgAg-1j
54 17 53 jca AUHGraphBYg:domiEdgA1-1 ontodomiEdgBidomiEdgAfiEdgAi=iEdgBgif:VtxA1-1 ontoVtxBg-1:domiEdgB1-1 ontodomiEdgAjdomiEdgBf-1iEdgBj=iEdgAg-1j
55 f1oeq1 h=g-1h:domiEdgB1-1 ontodomiEdgAg-1:domiEdgB1-1 ontodomiEdgA
56 fveq1 h=g-1hj=g-1j
57 56 fveq2d h=g-1iEdgAhj=iEdgAg-1j
58 57 eqeq2d h=g-1f-1iEdgBj=iEdgAhjf-1iEdgBj=iEdgAg-1j
59 58 ralbidv h=g-1jdomiEdgBf-1iEdgBj=iEdgAhjjdomiEdgBf-1iEdgBj=iEdgAg-1j
60 55 59 anbi12d h=g-1h:domiEdgB1-1 ontodomiEdgAjdomiEdgBf-1iEdgBj=iEdgAhjg-1:domiEdgB1-1 ontodomiEdgAjdomiEdgBf-1iEdgBj=iEdgAg-1j
61 14 54 60 spcedv AUHGraphBYg:domiEdgA1-1 ontodomiEdgBidomiEdgAfiEdgAi=iEdgBgif:VtxA1-1 ontoVtxBhh:domiEdgB1-1 ontodomiEdgAjdomiEdgBf-1iEdgBj=iEdgAhj
62 61 3exp AUHGraphBYg:domiEdgA1-1 ontodomiEdgBidomiEdgAfiEdgAi=iEdgBgif:VtxA1-1 ontoVtxBhh:domiEdgB1-1 ontodomiEdgAjdomiEdgBf-1iEdgBj=iEdgAhj
63 62 exlimdv AUHGraphBYgg:domiEdgA1-1 ontodomiEdgBidomiEdgAfiEdgAi=iEdgBgif:VtxA1-1 ontoVtxBhh:domiEdgB1-1 ontodomiEdgAjdomiEdgBf-1iEdgBj=iEdgAhj
64 63 com23 AUHGraphBYf:VtxA1-1 ontoVtxBgg:domiEdgA1-1 ontodomiEdgBidomiEdgAfiEdgAi=iEdgBgihh:domiEdgB1-1 ontodomiEdgAjdomiEdgBf-1iEdgBj=iEdgAhj
65 64 imp32 AUHGraphBYf:VtxA1-1 ontoVtxBgg:domiEdgA1-1 ontodomiEdgBidomiEdgAfiEdgAi=iEdgBgihh:domiEdgB1-1 ontodomiEdgAjdomiEdgBf-1iEdgBj=iEdgAhj
66 11 65 jca AUHGraphBYf:VtxA1-1 ontoVtxBgg:domiEdgA1-1 ontodomiEdgBidomiEdgAfiEdgAi=iEdgBgif-1:VtxB1-1 ontoVtxAhh:domiEdgB1-1 ontodomiEdgAjdomiEdgBf-1iEdgBj=iEdgAhj
67 f1oeq1 e=f-1e:VtxB1-1 ontoVtxAf-1:VtxB1-1 ontoVtxA
68 imaeq1 e=f-1eiEdgBj=f-1iEdgBj
69 68 eqeq1d e=f-1eiEdgBj=iEdgAhjf-1iEdgBj=iEdgAhj
70 69 ralbidv e=f-1jdomiEdgBeiEdgBj=iEdgAhjjdomiEdgBf-1iEdgBj=iEdgAhj
71 70 anbi2d e=f-1h:domiEdgB1-1 ontodomiEdgAjdomiEdgBeiEdgBj=iEdgAhjh:domiEdgB1-1 ontodomiEdgAjdomiEdgBf-1iEdgBj=iEdgAhj
72 71 exbidv e=f-1hh:domiEdgB1-1 ontodomiEdgAjdomiEdgBeiEdgBj=iEdgAhjhh:domiEdgB1-1 ontodomiEdgAjdomiEdgBf-1iEdgBj=iEdgAhj
73 67 72 anbi12d e=f-1e:VtxB1-1 ontoVtxAhh:domiEdgB1-1 ontodomiEdgAjdomiEdgBeiEdgBj=iEdgAhjf-1:VtxB1-1 ontoVtxAhh:domiEdgB1-1 ontodomiEdgAjdomiEdgBf-1iEdgBj=iEdgAhj
74 8 66 73 spcedv AUHGraphBYf:VtxA1-1 ontoVtxBgg:domiEdgA1-1 ontodomiEdgBidomiEdgAfiEdgAi=iEdgBgiee:VtxB1-1 ontoVtxAhh:domiEdgB1-1 ontodomiEdgAjdomiEdgBeiEdgBj=iEdgAhj
75 2 1 4 3 isomgr BYAUHGraphBIsomGrAee:VtxB1-1 ontoVtxAhh:domiEdgB1-1 ontodomiEdgAjdomiEdgBeiEdgBj=iEdgAhj
76 75 ancoms AUHGraphBYBIsomGrAee:VtxB1-1 ontoVtxAhh:domiEdgB1-1 ontodomiEdgAjdomiEdgBeiEdgBj=iEdgAhj
77 76 adantr AUHGraphBYf:VtxA1-1 ontoVtxBgg:domiEdgA1-1 ontodomiEdgBidomiEdgAfiEdgAi=iEdgBgiBIsomGrAee:VtxB1-1 ontoVtxAhh:domiEdgB1-1 ontodomiEdgAjdomiEdgBeiEdgBj=iEdgAhj
78 74 77 mpbird AUHGraphBYf:VtxA1-1 ontoVtxBgg:domiEdgA1-1 ontodomiEdgBidomiEdgAfiEdgAi=iEdgBgiBIsomGrA
79 78 ex AUHGraphBYf:VtxA1-1 ontoVtxBgg:domiEdgA1-1 ontodomiEdgBidomiEdgAfiEdgAi=iEdgBgiBIsomGrA
80 79 exlimdv AUHGraphBYff:VtxA1-1 ontoVtxBgg:domiEdgA1-1 ontodomiEdgBidomiEdgAfiEdgAi=iEdgBgiBIsomGrA
81 5 80 sylbid AUHGraphBYAIsomGrBBIsomGrA