Metamath Proof Explorer


Theorem isomgrsym

Description: The isomorphy relation is symmetric for hypergraphs. (Contributed by AV, 11-Nov-2022)

Ref Expression
Assertion isomgrsym A UHGraph B Y A IsomGr B B IsomGr A

Proof

Step Hyp Ref Expression
1 eqid Vtx A = Vtx A
2 eqid Vtx B = Vtx B
3 eqid iEdg A = iEdg A
4 eqid iEdg B = iEdg B
5 1 2 3 4 isomgr A UHGraph B Y A IsomGr B f f : Vtx A 1-1 onto Vtx B g g : dom iEdg A 1-1 onto dom iEdg B i dom iEdg A f iEdg A i = iEdg B g i
6 vex f V
7 6 cnvex f -1 V
8 7 a1i A UHGraph B Y f : Vtx A 1-1 onto Vtx B g g : dom iEdg A 1-1 onto dom iEdg B i dom iEdg A f iEdg A i = iEdg B g i f -1 V
9 f1ocnv f : Vtx A 1-1 onto Vtx B f -1 : Vtx B 1-1 onto Vtx A
10 9 adantr f : Vtx A 1-1 onto Vtx B g g : dom iEdg A 1-1 onto dom iEdg B i dom iEdg A f iEdg A i = iEdg B g i f -1 : Vtx B 1-1 onto Vtx A
11 10 adantl A UHGraph B Y f : Vtx A 1-1 onto Vtx B g g : dom iEdg A 1-1 onto dom iEdg B i dom iEdg A f iEdg A i = iEdg B g i f -1 : Vtx B 1-1 onto Vtx A
12 vex g V
13 12 cnvex g -1 V
14 13 a1i A UHGraph B Y g : dom iEdg A 1-1 onto dom iEdg B i dom iEdg A f iEdg A i = iEdg B g i f : Vtx A 1-1 onto Vtx B g -1 V
15 f1ocnv g : dom iEdg A 1-1 onto dom iEdg B g -1 : dom iEdg B 1-1 onto dom iEdg A
16 15 adantr g : dom iEdg A 1-1 onto dom iEdg B i dom iEdg A f iEdg A i = iEdg B g i g -1 : dom iEdg B 1-1 onto dom iEdg A
17 16 3ad2ant2 A UHGraph B Y g : dom iEdg A 1-1 onto dom iEdg B i dom iEdg A f iEdg A i = iEdg B g i f : Vtx A 1-1 onto Vtx B g -1 : dom iEdg B 1-1 onto dom iEdg A
18 f1ocnvdm g : dom iEdg A 1-1 onto dom iEdg B j dom iEdg B g -1 j dom iEdg A
19 18 3ad2antl2 A UHGraph B Y g : dom iEdg A 1-1 onto dom iEdg B f : Vtx A 1-1 onto Vtx B j dom iEdg B g -1 j dom iEdg A
20 fveq2 i = g -1 j iEdg A i = iEdg A g -1 j
21 20 imaeq2d i = g -1 j f iEdg A i = f iEdg A g -1 j
22 2fveq3 i = g -1 j iEdg B g i = iEdg B g g -1 j
23 21 22 eqeq12d i = g -1 j f iEdg A i = iEdg B g i f iEdg A g -1 j = iEdg B g g -1 j
24 23 adantl A UHGraph B Y g : dom iEdg A 1-1 onto dom iEdg B f : Vtx A 1-1 onto Vtx B j dom iEdg B i = g -1 j f iEdg A i = iEdg B g i f iEdg A g -1 j = iEdg B g g -1 j
25 19 24 rspcdv A UHGraph B Y g : dom iEdg A 1-1 onto dom iEdg B f : Vtx A 1-1 onto Vtx B j dom iEdg B i dom iEdg A f iEdg A i = iEdg B g i f iEdg A g -1 j = iEdg B g g -1 j
26 f1ocnvfv2 g : dom iEdg A 1-1 onto dom iEdg B j dom iEdg B g g -1 j = j
27 26 3ad2antl2 A UHGraph B Y g : dom iEdg A 1-1 onto dom iEdg B f : Vtx A 1-1 onto Vtx B j dom iEdg B g g -1 j = j
28 27 fveq2d A UHGraph B Y g : dom iEdg A 1-1 onto dom iEdg B f : Vtx A 1-1 onto Vtx B j dom iEdg B iEdg B g g -1 j = iEdg B j
29 28 eqeq2d A UHGraph B Y g : dom iEdg A 1-1 onto dom iEdg B f : Vtx A 1-1 onto Vtx B j dom iEdg B f iEdg A g -1 j = iEdg B g g -1 j f iEdg A g -1 j = iEdg B j
30 f1of1 f : Vtx A 1-1 onto Vtx B f : Vtx A 1-1 Vtx B
31 30 3ad2ant3 A UHGraph B Y g : dom iEdg A 1-1 onto dom iEdg B f : Vtx A 1-1 onto Vtx B f : Vtx A 1-1 Vtx B
32 31 adantr A UHGraph B Y g : dom iEdg A 1-1 onto dom iEdg B f : Vtx A 1-1 onto Vtx B j dom iEdg B f : Vtx A 1-1 Vtx B
33 simpl1l A UHGraph B Y g : dom iEdg A 1-1 onto dom iEdg B f : Vtx A 1-1 onto Vtx B j dom iEdg B A UHGraph
34 1 3 uhgrss A UHGraph g -1 j dom iEdg A iEdg A g -1 j Vtx A
35 33 19 34 syl2anc A UHGraph B Y g : dom iEdg A 1-1 onto dom iEdg B f : Vtx A 1-1 onto Vtx B j dom iEdg B iEdg A g -1 j Vtx A
36 32 35 jca A UHGraph B Y g : dom iEdg A 1-1 onto dom iEdg B f : Vtx A 1-1 onto Vtx B j dom iEdg B f : Vtx A 1-1 Vtx B iEdg A g -1 j Vtx A
37 36 adantr A UHGraph B Y g : dom iEdg A 1-1 onto dom iEdg B f : Vtx A 1-1 onto Vtx B j dom iEdg B f iEdg A g -1 j = iEdg B j f : Vtx A 1-1 Vtx B iEdg A g -1 j Vtx A
38 f1imacnv f : Vtx A 1-1 Vtx B iEdg A g -1 j Vtx A f -1 f iEdg A g -1 j = iEdg A g -1 j
39 37 38 syl A UHGraph B Y g : dom iEdg A 1-1 onto dom iEdg B f : Vtx A 1-1 onto Vtx B j dom iEdg B f iEdg A g -1 j = iEdg B j f -1 f iEdg A g -1 j = iEdg A g -1 j
40 imaeq2 f iEdg A g -1 j = iEdg B j f -1 f iEdg A g -1 j = f -1 iEdg B j
41 40 adantl A UHGraph B Y g : dom iEdg A 1-1 onto dom iEdg B f : Vtx A 1-1 onto Vtx B j dom iEdg B f iEdg A g -1 j = iEdg B j f -1 f iEdg A g -1 j = f -1 iEdg B j
42 39 41 eqtr3d A UHGraph B Y g : dom iEdg A 1-1 onto dom iEdg B f : Vtx A 1-1 onto Vtx B j dom iEdg B f iEdg A g -1 j = iEdg B j iEdg A g -1 j = f -1 iEdg B j
43 42 ex A UHGraph B Y g : dom iEdg A 1-1 onto dom iEdg B f : Vtx A 1-1 onto Vtx B j dom iEdg B f iEdg A g -1 j = iEdg B j iEdg A g -1 j = f -1 iEdg B j
44 29 43 sylbid A UHGraph B Y g : dom iEdg A 1-1 onto dom iEdg B f : Vtx A 1-1 onto Vtx B j dom iEdg B f iEdg A g -1 j = iEdg B g g -1 j iEdg A g -1 j = f -1 iEdg B j
45 25 44 syld A UHGraph B Y g : dom iEdg A 1-1 onto dom iEdg B f : Vtx A 1-1 onto Vtx B j dom iEdg B i dom iEdg A f iEdg A i = iEdg B g i iEdg A g -1 j = f -1 iEdg B j
46 45 ex A UHGraph B Y g : dom iEdg A 1-1 onto dom iEdg B f : Vtx A 1-1 onto Vtx B j dom iEdg B i dom iEdg A f iEdg A i = iEdg B g i iEdg A g -1 j = f -1 iEdg B j
47 46 com23 A UHGraph B Y g : dom iEdg A 1-1 onto dom iEdg B f : Vtx A 1-1 onto Vtx B i dom iEdg A f iEdg A i = iEdg B g i j dom iEdg B iEdg A g -1 j = f -1 iEdg B j
48 47 3exp A UHGraph B Y g : dom iEdg A 1-1 onto dom iEdg B f : Vtx A 1-1 onto Vtx B i dom iEdg A f iEdg A i = iEdg B g i j dom iEdg B iEdg A g -1 j = f -1 iEdg B j
49 48 com34 A UHGraph B Y g : dom iEdg A 1-1 onto dom iEdg B i dom iEdg A f iEdg A i = iEdg B g i f : Vtx A 1-1 onto Vtx B j dom iEdg B iEdg A g -1 j = f -1 iEdg B j
50 49 impd A UHGraph B Y g : dom iEdg A 1-1 onto dom iEdg B i dom iEdg A f iEdg A i = iEdg B g i f : Vtx A 1-1 onto Vtx B j dom iEdg B iEdg A g -1 j = f -1 iEdg B j
51 50 3imp1 A UHGraph B Y g : dom iEdg A 1-1 onto dom iEdg B i dom iEdg A f iEdg A i = iEdg B g i f : Vtx A 1-1 onto Vtx B j dom iEdg B iEdg A g -1 j = f -1 iEdg B j
52 51 eqcomd A UHGraph B Y g : dom iEdg A 1-1 onto dom iEdg B i dom iEdg A f iEdg A i = iEdg B g i f : Vtx A 1-1 onto Vtx B j dom iEdg B f -1 iEdg B j = iEdg A g -1 j
53 52 ralrimiva A UHGraph B Y g : dom iEdg A 1-1 onto dom iEdg B i dom iEdg A f iEdg A i = iEdg B g i f : Vtx A 1-1 onto Vtx B j dom iEdg B f -1 iEdg B j = iEdg A g -1 j
54 17 53 jca A UHGraph B Y g : dom iEdg A 1-1 onto dom iEdg B i dom iEdg A f iEdg A i = iEdg B g i f : Vtx A 1-1 onto Vtx B g -1 : dom iEdg B 1-1 onto dom iEdg A j dom iEdg B f -1 iEdg B j = iEdg A g -1 j
55 f1oeq1 h = g -1 h : dom iEdg B 1-1 onto dom iEdg A g -1 : dom iEdg B 1-1 onto dom iEdg A
56 fveq1 h = g -1 h j = g -1 j
57 56 fveq2d h = g -1 iEdg A h j = iEdg A g -1 j
58 57 eqeq2d h = g -1 f -1 iEdg B j = iEdg A h j f -1 iEdg B j = iEdg A g -1 j
59 58 ralbidv h = g -1 j dom iEdg B f -1 iEdg B j = iEdg A h j j dom iEdg B f -1 iEdg B j = iEdg A g -1 j
60 55 59 anbi12d h = g -1 h : dom iEdg B 1-1 onto dom iEdg A j dom iEdg B f -1 iEdg B j = iEdg A h j g -1 : dom iEdg B 1-1 onto dom iEdg A j dom iEdg B f -1 iEdg B j = iEdg A g -1 j
61 14 54 60 spcedv A UHGraph B Y g : dom iEdg A 1-1 onto dom iEdg B i dom iEdg A f iEdg A i = iEdg B g i f : Vtx A 1-1 onto Vtx B h h : dom iEdg B 1-1 onto dom iEdg A j dom iEdg B f -1 iEdg B j = iEdg A h j
62 61 3exp A UHGraph B Y g : dom iEdg A 1-1 onto dom iEdg B i dom iEdg A f iEdg A i = iEdg B g i f : Vtx A 1-1 onto Vtx B h h : dom iEdg B 1-1 onto dom iEdg A j dom iEdg B f -1 iEdg B j = iEdg A h j
63 62 exlimdv A UHGraph B Y g g : dom iEdg A 1-1 onto dom iEdg B i dom iEdg A f iEdg A i = iEdg B g i f : Vtx A 1-1 onto Vtx B h h : dom iEdg B 1-1 onto dom iEdg A j dom iEdg B f -1 iEdg B j = iEdg A h j
64 63 com23 A UHGraph B Y f : Vtx A 1-1 onto Vtx B g g : dom iEdg A 1-1 onto dom iEdg B i dom iEdg A f iEdg A i = iEdg B g i h h : dom iEdg B 1-1 onto dom iEdg A j dom iEdg B f -1 iEdg B j = iEdg A h j
65 64 imp32 A UHGraph B Y f : Vtx A 1-1 onto Vtx B g g : dom iEdg A 1-1 onto dom iEdg B i dom iEdg A f iEdg A i = iEdg B g i h h : dom iEdg B 1-1 onto dom iEdg A j dom iEdg B f -1 iEdg B j = iEdg A h j
66 11 65 jca A UHGraph B Y f : Vtx A 1-1 onto Vtx B g g : dom iEdg A 1-1 onto dom iEdg B i dom iEdg A f iEdg A i = iEdg B g i f -1 : Vtx B 1-1 onto Vtx A h h : dom iEdg B 1-1 onto dom iEdg A j dom iEdg B f -1 iEdg B j = iEdg A h j
67 f1oeq1 e = f -1 e : Vtx B 1-1 onto Vtx A f -1 : Vtx B 1-1 onto Vtx A
68 imaeq1 e = f -1 e iEdg B j = f -1 iEdg B j
69 68 eqeq1d e = f -1 e iEdg B j = iEdg A h j f -1 iEdg B j = iEdg A h j
70 69 ralbidv e = f -1 j dom iEdg B e iEdg B j = iEdg A h j j dom iEdg B f -1 iEdg B j = iEdg A h j
71 70 anbi2d e = f -1 h : dom iEdg B 1-1 onto dom iEdg A j dom iEdg B e iEdg B j = iEdg A h j h : dom iEdg B 1-1 onto dom iEdg A j dom iEdg B f -1 iEdg B j = iEdg A h j
72 71 exbidv e = f -1 h h : dom iEdg B 1-1 onto dom iEdg A j dom iEdg B e iEdg B j = iEdg A h j h h : dom iEdg B 1-1 onto dom iEdg A j dom iEdg B f -1 iEdg B j = iEdg A h j
73 67 72 anbi12d e = f -1 e : Vtx B 1-1 onto Vtx A h h : dom iEdg B 1-1 onto dom iEdg A j dom iEdg B e iEdg B j = iEdg A h j f -1 : Vtx B 1-1 onto Vtx A h h : dom iEdg B 1-1 onto dom iEdg A j dom iEdg B f -1 iEdg B j = iEdg A h j
74 8 66 73 spcedv A UHGraph B Y f : Vtx A 1-1 onto Vtx B g g : dom iEdg A 1-1 onto dom iEdg B i dom iEdg A f iEdg A i = iEdg B g i e e : Vtx B 1-1 onto Vtx A h h : dom iEdg B 1-1 onto dom iEdg A j dom iEdg B e iEdg B j = iEdg A h j
75 2 1 4 3 isomgr B Y A UHGraph B IsomGr A e e : Vtx B 1-1 onto Vtx A h h : dom iEdg B 1-1 onto dom iEdg A j dom iEdg B e iEdg B j = iEdg A h j
76 75 ancoms A UHGraph B Y B IsomGr A e e : Vtx B 1-1 onto Vtx A h h : dom iEdg B 1-1 onto dom iEdg A j dom iEdg B e iEdg B j = iEdg A h j
77 76 adantr A UHGraph B Y f : Vtx A 1-1 onto Vtx B g g : dom iEdg A 1-1 onto dom iEdg B i dom iEdg A f iEdg A i = iEdg B g i B IsomGr A e e : Vtx B 1-1 onto Vtx A h h : dom iEdg B 1-1 onto dom iEdg A j dom iEdg B e iEdg B j = iEdg A h j
78 74 77 mpbird A UHGraph B Y f : Vtx A 1-1 onto Vtx B g g : dom iEdg A 1-1 onto dom iEdg B i dom iEdg A f iEdg A i = iEdg B g i B IsomGr A
79 78 ex A UHGraph B Y f : Vtx A 1-1 onto Vtx B g g : dom iEdg A 1-1 onto dom iEdg B i dom iEdg A f iEdg A i = iEdg B g i B IsomGr A
80 79 exlimdv A UHGraph B Y f f : Vtx A 1-1 onto Vtx B g g : dom iEdg A 1-1 onto dom iEdg B i dom iEdg A f iEdg A i = iEdg B g i B IsomGr A
81 5 80 sylbid A UHGraph B Y A IsomGr B B IsomGr A