Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Alexander van der Vekens
Graph theory (extension)
Isomorphic graphs
isomgrsym
Next ⟩
isomgrsymb
Metamath Proof Explorer
Ascii
Unicode
Theorem
isomgrsym
Description:
The isomorphy relation is symmetric for hypergraphs.
(Contributed by
AV
, 11-Nov-2022)
Ref
Expression
Assertion
isomgrsym
⊢
A
∈
UHGraph
∧
B
∈
Y
→
A
IsomGr
B
→
B
IsomGr
A
Proof
Step
Hyp
Ref
Expression
1
eqid
⊢
Vtx
A
=
Vtx
A
2
eqid
⊢
Vtx
B
=
Vtx
B
3
eqid
⊢
iEdg
A
=
iEdg
A
4
eqid
⊢
iEdg
B
=
iEdg
B
5
1
2
3
4
isomgr
⊢
A
∈
UHGraph
∧
B
∈
Y
→
A
IsomGr
B
↔
∃
f
f
:
Vtx
A
⟶
1-1 onto
Vtx
B
∧
∃
g
g
:
dom
iEdg
A
⟶
1-1 onto
dom
iEdg
B
∧
∀
i
∈
dom
iEdg
A
f
iEdg
A
i
=
iEdg
B
g
i
6
vex
⊢
f
∈
V
7
6
cnvex
⊢
f
-1
∈
V
8
7
a1i
⊢
A
∈
UHGraph
∧
B
∈
Y
∧
f
:
Vtx
A
⟶
1-1 onto
Vtx
B
∧
∃
g
g
:
dom
iEdg
A
⟶
1-1 onto
dom
iEdg
B
∧
∀
i
∈
dom
iEdg
A
f
iEdg
A
i
=
iEdg
B
g
i
→
f
-1
∈
V
9
f1ocnv
⊢
f
:
Vtx
A
⟶
1-1 onto
Vtx
B
→
f
-1
:
Vtx
B
⟶
1-1 onto
Vtx
A
10
9
adantr
⊢
f
:
Vtx
A
⟶
1-1 onto
Vtx
B
∧
∃
g
g
:
dom
iEdg
A
⟶
1-1 onto
dom
iEdg
B
∧
∀
i
∈
dom
iEdg
A
f
iEdg
A
i
=
iEdg
B
g
i
→
f
-1
:
Vtx
B
⟶
1-1 onto
Vtx
A
11
10
adantl
⊢
A
∈
UHGraph
∧
B
∈
Y
∧
f
:
Vtx
A
⟶
1-1 onto
Vtx
B
∧
∃
g
g
:
dom
iEdg
A
⟶
1-1 onto
dom
iEdg
B
∧
∀
i
∈
dom
iEdg
A
f
iEdg
A
i
=
iEdg
B
g
i
→
f
-1
:
Vtx
B
⟶
1-1 onto
Vtx
A
12
vex
⊢
g
∈
V
13
12
cnvex
⊢
g
-1
∈
V
14
13
a1i
⊢
A
∈
UHGraph
∧
B
∈
Y
∧
g
:
dom
iEdg
A
⟶
1-1 onto
dom
iEdg
B
∧
∀
i
∈
dom
iEdg
A
f
iEdg
A
i
=
iEdg
B
g
i
∧
f
:
Vtx
A
⟶
1-1 onto
Vtx
B
→
g
-1
∈
V
15
f1ocnv
⊢
g
:
dom
iEdg
A
⟶
1-1 onto
dom
iEdg
B
→
g
-1
:
dom
iEdg
B
⟶
1-1 onto
dom
iEdg
A
16
15
adantr
⊢
g
:
dom
iEdg
A
⟶
1-1 onto
dom
iEdg
B
∧
∀
i
∈
dom
iEdg
A
f
iEdg
A
i
=
iEdg
B
g
i
→
g
-1
:
dom
iEdg
B
⟶
1-1 onto
dom
iEdg
A
17
16
3ad2ant2
⊢
A
∈
UHGraph
∧
B
∈
Y
∧
g
:
dom
iEdg
A
⟶
1-1 onto
dom
iEdg
B
∧
∀
i
∈
dom
iEdg
A
f
iEdg
A
i
=
iEdg
B
g
i
∧
f
:
Vtx
A
⟶
1-1 onto
Vtx
B
→
g
-1
:
dom
iEdg
B
⟶
1-1 onto
dom
iEdg
A
18
f1ocnvdm
⊢
g
:
dom
iEdg
A
⟶
1-1 onto
dom
iEdg
B
∧
j
∈
dom
iEdg
B
→
g
-1
j
∈
dom
iEdg
A
19
18
3ad2antl2
⊢
A
∈
UHGraph
∧
B
∈
Y
∧
g
:
dom
iEdg
A
⟶
1-1 onto
dom
iEdg
B
∧
f
:
Vtx
A
⟶
1-1 onto
Vtx
B
∧
j
∈
dom
iEdg
B
→
g
-1
j
∈
dom
iEdg
A
20
fveq2
⊢
i
=
g
-1
j
→
iEdg
A
i
=
iEdg
A
g
-1
j
21
20
imaeq2d
⊢
i
=
g
-1
j
→
f
iEdg
A
i
=
f
iEdg
A
g
-1
j
22
2fveq3
⊢
i
=
g
-1
j
→
iEdg
B
g
i
=
iEdg
B
g
g
-1
j
23
21
22
eqeq12d
⊢
i
=
g
-1
j
→
f
iEdg
A
i
=
iEdg
B
g
i
↔
f
iEdg
A
g
-1
j
=
iEdg
B
g
g
-1
j
24
23
adantl
⊢
A
∈
UHGraph
∧
B
∈
Y
∧
g
:
dom
iEdg
A
⟶
1-1 onto
dom
iEdg
B
∧
f
:
Vtx
A
⟶
1-1 onto
Vtx
B
∧
j
∈
dom
iEdg
B
∧
i
=
g
-1
j
→
f
iEdg
A
i
=
iEdg
B
g
i
↔
f
iEdg
A
g
-1
j
=
iEdg
B
g
g
-1
j
25
19
24
rspcdv
⊢
A
∈
UHGraph
∧
B
∈
Y
∧
g
:
dom
iEdg
A
⟶
1-1 onto
dom
iEdg
B
∧
f
:
Vtx
A
⟶
1-1 onto
Vtx
B
∧
j
∈
dom
iEdg
B
→
∀
i
∈
dom
iEdg
A
f
iEdg
A
i
=
iEdg
B
g
i
→
f
iEdg
A
g
-1
j
=
iEdg
B
g
g
-1
j
26
f1ocnvfv2
⊢
g
:
dom
iEdg
A
⟶
1-1 onto
dom
iEdg
B
∧
j
∈
dom
iEdg
B
→
g
g
-1
j
=
j
27
26
3ad2antl2
⊢
A
∈
UHGraph
∧
B
∈
Y
∧
g
:
dom
iEdg
A
⟶
1-1 onto
dom
iEdg
B
∧
f
:
Vtx
A
⟶
1-1 onto
Vtx
B
∧
j
∈
dom
iEdg
B
→
g
g
-1
j
=
j
28
27
fveq2d
⊢
A
∈
UHGraph
∧
B
∈
Y
∧
g
:
dom
iEdg
A
⟶
1-1 onto
dom
iEdg
B
∧
f
:
Vtx
A
⟶
1-1 onto
Vtx
B
∧
j
∈
dom
iEdg
B
→
iEdg
B
g
g
-1
j
=
iEdg
B
j
29
28
eqeq2d
⊢
A
∈
UHGraph
∧
B
∈
Y
∧
g
:
dom
iEdg
A
⟶
1-1 onto
dom
iEdg
B
∧
f
:
Vtx
A
⟶
1-1 onto
Vtx
B
∧
j
∈
dom
iEdg
B
→
f
iEdg
A
g
-1
j
=
iEdg
B
g
g
-1
j
↔
f
iEdg
A
g
-1
j
=
iEdg
B
j
30
f1of1
⊢
f
:
Vtx
A
⟶
1-1 onto
Vtx
B
→
f
:
Vtx
A
⟶
1-1
Vtx
B
31
30
3ad2ant3
⊢
A
∈
UHGraph
∧
B
∈
Y
∧
g
:
dom
iEdg
A
⟶
1-1 onto
dom
iEdg
B
∧
f
:
Vtx
A
⟶
1-1 onto
Vtx
B
→
f
:
Vtx
A
⟶
1-1
Vtx
B
32
31
adantr
⊢
A
∈
UHGraph
∧
B
∈
Y
∧
g
:
dom
iEdg
A
⟶
1-1 onto
dom
iEdg
B
∧
f
:
Vtx
A
⟶
1-1 onto
Vtx
B
∧
j
∈
dom
iEdg
B
→
f
:
Vtx
A
⟶
1-1
Vtx
B
33
simpl1l
⊢
A
∈
UHGraph
∧
B
∈
Y
∧
g
:
dom
iEdg
A
⟶
1-1 onto
dom
iEdg
B
∧
f
:
Vtx
A
⟶
1-1 onto
Vtx
B
∧
j
∈
dom
iEdg
B
→
A
∈
UHGraph
34
1
3
uhgrss
⊢
A
∈
UHGraph
∧
g
-1
j
∈
dom
iEdg
A
→
iEdg
A
g
-1
j
⊆
Vtx
A
35
33
19
34
syl2anc
⊢
A
∈
UHGraph
∧
B
∈
Y
∧
g
:
dom
iEdg
A
⟶
1-1 onto
dom
iEdg
B
∧
f
:
Vtx
A
⟶
1-1 onto
Vtx
B
∧
j
∈
dom
iEdg
B
→
iEdg
A
g
-1
j
⊆
Vtx
A
36
32
35
jca
⊢
A
∈
UHGraph
∧
B
∈
Y
∧
g
:
dom
iEdg
A
⟶
1-1 onto
dom
iEdg
B
∧
f
:
Vtx
A
⟶
1-1 onto
Vtx
B
∧
j
∈
dom
iEdg
B
→
f
:
Vtx
A
⟶
1-1
Vtx
B
∧
iEdg
A
g
-1
j
⊆
Vtx
A
37
36
adantr
⊢
A
∈
UHGraph
∧
B
∈
Y
∧
g
:
dom
iEdg
A
⟶
1-1 onto
dom
iEdg
B
∧
f
:
Vtx
A
⟶
1-1 onto
Vtx
B
∧
j
∈
dom
iEdg
B
∧
f
iEdg
A
g
-1
j
=
iEdg
B
j
→
f
:
Vtx
A
⟶
1-1
Vtx
B
∧
iEdg
A
g
-1
j
⊆
Vtx
A
38
f1imacnv
⊢
f
:
Vtx
A
⟶
1-1
Vtx
B
∧
iEdg
A
g
-1
j
⊆
Vtx
A
→
f
-1
f
iEdg
A
g
-1
j
=
iEdg
A
g
-1
j
39
37
38
syl
⊢
A
∈
UHGraph
∧
B
∈
Y
∧
g
:
dom
iEdg
A
⟶
1-1 onto
dom
iEdg
B
∧
f
:
Vtx
A
⟶
1-1 onto
Vtx
B
∧
j
∈
dom
iEdg
B
∧
f
iEdg
A
g
-1
j
=
iEdg
B
j
→
f
-1
f
iEdg
A
g
-1
j
=
iEdg
A
g
-1
j
40
imaeq2
⊢
f
iEdg
A
g
-1
j
=
iEdg
B
j
→
f
-1
f
iEdg
A
g
-1
j
=
f
-1
iEdg
B
j
41
40
adantl
⊢
A
∈
UHGraph
∧
B
∈
Y
∧
g
:
dom
iEdg
A
⟶
1-1 onto
dom
iEdg
B
∧
f
:
Vtx
A
⟶
1-1 onto
Vtx
B
∧
j
∈
dom
iEdg
B
∧
f
iEdg
A
g
-1
j
=
iEdg
B
j
→
f
-1
f
iEdg
A
g
-1
j
=
f
-1
iEdg
B
j
42
39
41
eqtr3d
⊢
A
∈
UHGraph
∧
B
∈
Y
∧
g
:
dom
iEdg
A
⟶
1-1 onto
dom
iEdg
B
∧
f
:
Vtx
A
⟶
1-1 onto
Vtx
B
∧
j
∈
dom
iEdg
B
∧
f
iEdg
A
g
-1
j
=
iEdg
B
j
→
iEdg
A
g
-1
j
=
f
-1
iEdg
B
j
43
42
ex
⊢
A
∈
UHGraph
∧
B
∈
Y
∧
g
:
dom
iEdg
A
⟶
1-1 onto
dom
iEdg
B
∧
f
:
Vtx
A
⟶
1-1 onto
Vtx
B
∧
j
∈
dom
iEdg
B
→
f
iEdg
A
g
-1
j
=
iEdg
B
j
→
iEdg
A
g
-1
j
=
f
-1
iEdg
B
j
44
29
43
sylbid
⊢
A
∈
UHGraph
∧
B
∈
Y
∧
g
:
dom
iEdg
A
⟶
1-1 onto
dom
iEdg
B
∧
f
:
Vtx
A
⟶
1-1 onto
Vtx
B
∧
j
∈
dom
iEdg
B
→
f
iEdg
A
g
-1
j
=
iEdg
B
g
g
-1
j
→
iEdg
A
g
-1
j
=
f
-1
iEdg
B
j
45
25
44
syld
⊢
A
∈
UHGraph
∧
B
∈
Y
∧
g
:
dom
iEdg
A
⟶
1-1 onto
dom
iEdg
B
∧
f
:
Vtx
A
⟶
1-1 onto
Vtx
B
∧
j
∈
dom
iEdg
B
→
∀
i
∈
dom
iEdg
A
f
iEdg
A
i
=
iEdg
B
g
i
→
iEdg
A
g
-1
j
=
f
-1
iEdg
B
j
46
45
ex
⊢
A
∈
UHGraph
∧
B
∈
Y
∧
g
:
dom
iEdg
A
⟶
1-1 onto
dom
iEdg
B
∧
f
:
Vtx
A
⟶
1-1 onto
Vtx
B
→
j
∈
dom
iEdg
B
→
∀
i
∈
dom
iEdg
A
f
iEdg
A
i
=
iEdg
B
g
i
→
iEdg
A
g
-1
j
=
f
-1
iEdg
B
j
47
46
com23
⊢
A
∈
UHGraph
∧
B
∈
Y
∧
g
:
dom
iEdg
A
⟶
1-1 onto
dom
iEdg
B
∧
f
:
Vtx
A
⟶
1-1 onto
Vtx
B
→
∀
i
∈
dom
iEdg
A
f
iEdg
A
i
=
iEdg
B
g
i
→
j
∈
dom
iEdg
B
→
iEdg
A
g
-1
j
=
f
-1
iEdg
B
j
48
47
3exp
⊢
A
∈
UHGraph
∧
B
∈
Y
→
g
:
dom
iEdg
A
⟶
1-1 onto
dom
iEdg
B
→
f
:
Vtx
A
⟶
1-1 onto
Vtx
B
→
∀
i
∈
dom
iEdg
A
f
iEdg
A
i
=
iEdg
B
g
i
→
j
∈
dom
iEdg
B
→
iEdg
A
g
-1
j
=
f
-1
iEdg
B
j
49
48
com34
⊢
A
∈
UHGraph
∧
B
∈
Y
→
g
:
dom
iEdg
A
⟶
1-1 onto
dom
iEdg
B
→
∀
i
∈
dom
iEdg
A
f
iEdg
A
i
=
iEdg
B
g
i
→
f
:
Vtx
A
⟶
1-1 onto
Vtx
B
→
j
∈
dom
iEdg
B
→
iEdg
A
g
-1
j
=
f
-1
iEdg
B
j
50
49
impd
⊢
A
∈
UHGraph
∧
B
∈
Y
→
g
:
dom
iEdg
A
⟶
1-1 onto
dom
iEdg
B
∧
∀
i
∈
dom
iEdg
A
f
iEdg
A
i
=
iEdg
B
g
i
→
f
:
Vtx
A
⟶
1-1 onto
Vtx
B
→
j
∈
dom
iEdg
B
→
iEdg
A
g
-1
j
=
f
-1
iEdg
B
j
51
50
3imp1
⊢
A
∈
UHGraph
∧
B
∈
Y
∧
g
:
dom
iEdg
A
⟶
1-1 onto
dom
iEdg
B
∧
∀
i
∈
dom
iEdg
A
f
iEdg
A
i
=
iEdg
B
g
i
∧
f
:
Vtx
A
⟶
1-1 onto
Vtx
B
∧
j
∈
dom
iEdg
B
→
iEdg
A
g
-1
j
=
f
-1
iEdg
B
j
52
51
eqcomd
⊢
A
∈
UHGraph
∧
B
∈
Y
∧
g
:
dom
iEdg
A
⟶
1-1 onto
dom
iEdg
B
∧
∀
i
∈
dom
iEdg
A
f
iEdg
A
i
=
iEdg
B
g
i
∧
f
:
Vtx
A
⟶
1-1 onto
Vtx
B
∧
j
∈
dom
iEdg
B
→
f
-1
iEdg
B
j
=
iEdg
A
g
-1
j
53
52
ralrimiva
⊢
A
∈
UHGraph
∧
B
∈
Y
∧
g
:
dom
iEdg
A
⟶
1-1 onto
dom
iEdg
B
∧
∀
i
∈
dom
iEdg
A
f
iEdg
A
i
=
iEdg
B
g
i
∧
f
:
Vtx
A
⟶
1-1 onto
Vtx
B
→
∀
j
∈
dom
iEdg
B
f
-1
iEdg
B
j
=
iEdg
A
g
-1
j
54
17
53
jca
⊢
A
∈
UHGraph
∧
B
∈
Y
∧
g
:
dom
iEdg
A
⟶
1-1 onto
dom
iEdg
B
∧
∀
i
∈
dom
iEdg
A
f
iEdg
A
i
=
iEdg
B
g
i
∧
f
:
Vtx
A
⟶
1-1 onto
Vtx
B
→
g
-1
:
dom
iEdg
B
⟶
1-1 onto
dom
iEdg
A
∧
∀
j
∈
dom
iEdg
B
f
-1
iEdg
B
j
=
iEdg
A
g
-1
j
55
f1oeq1
⊢
h
=
g
-1
→
h
:
dom
iEdg
B
⟶
1-1 onto
dom
iEdg
A
↔
g
-1
:
dom
iEdg
B
⟶
1-1 onto
dom
iEdg
A
56
fveq1
⊢
h
=
g
-1
→
h
j
=
g
-1
j
57
56
fveq2d
⊢
h
=
g
-1
→
iEdg
A
h
j
=
iEdg
A
g
-1
j
58
57
eqeq2d
⊢
h
=
g
-1
→
f
-1
iEdg
B
j
=
iEdg
A
h
j
↔
f
-1
iEdg
B
j
=
iEdg
A
g
-1
j
59
58
ralbidv
⊢
h
=
g
-1
→
∀
j
∈
dom
iEdg
B
f
-1
iEdg
B
j
=
iEdg
A
h
j
↔
∀
j
∈
dom
iEdg
B
f
-1
iEdg
B
j
=
iEdg
A
g
-1
j
60
55
59
anbi12d
⊢
h
=
g
-1
→
h
:
dom
iEdg
B
⟶
1-1 onto
dom
iEdg
A
∧
∀
j
∈
dom
iEdg
B
f
-1
iEdg
B
j
=
iEdg
A
h
j
↔
g
-1
:
dom
iEdg
B
⟶
1-1 onto
dom
iEdg
A
∧
∀
j
∈
dom
iEdg
B
f
-1
iEdg
B
j
=
iEdg
A
g
-1
j
61
14
54
60
spcedv
⊢
A
∈
UHGraph
∧
B
∈
Y
∧
g
:
dom
iEdg
A
⟶
1-1 onto
dom
iEdg
B
∧
∀
i
∈
dom
iEdg
A
f
iEdg
A
i
=
iEdg
B
g
i
∧
f
:
Vtx
A
⟶
1-1 onto
Vtx
B
→
∃
h
h
:
dom
iEdg
B
⟶
1-1 onto
dom
iEdg
A
∧
∀
j
∈
dom
iEdg
B
f
-1
iEdg
B
j
=
iEdg
A
h
j
62
61
3exp
⊢
A
∈
UHGraph
∧
B
∈
Y
→
g
:
dom
iEdg
A
⟶
1-1 onto
dom
iEdg
B
∧
∀
i
∈
dom
iEdg
A
f
iEdg
A
i
=
iEdg
B
g
i
→
f
:
Vtx
A
⟶
1-1 onto
Vtx
B
→
∃
h
h
:
dom
iEdg
B
⟶
1-1 onto
dom
iEdg
A
∧
∀
j
∈
dom
iEdg
B
f
-1
iEdg
B
j
=
iEdg
A
h
j
63
62
exlimdv
⊢
A
∈
UHGraph
∧
B
∈
Y
→
∃
g
g
:
dom
iEdg
A
⟶
1-1 onto
dom
iEdg
B
∧
∀
i
∈
dom
iEdg
A
f
iEdg
A
i
=
iEdg
B
g
i
→
f
:
Vtx
A
⟶
1-1 onto
Vtx
B
→
∃
h
h
:
dom
iEdg
B
⟶
1-1 onto
dom
iEdg
A
∧
∀
j
∈
dom
iEdg
B
f
-1
iEdg
B
j
=
iEdg
A
h
j
64
63
com23
⊢
A
∈
UHGraph
∧
B
∈
Y
→
f
:
Vtx
A
⟶
1-1 onto
Vtx
B
→
∃
g
g
:
dom
iEdg
A
⟶
1-1 onto
dom
iEdg
B
∧
∀
i
∈
dom
iEdg
A
f
iEdg
A
i
=
iEdg
B
g
i
→
∃
h
h
:
dom
iEdg
B
⟶
1-1 onto
dom
iEdg
A
∧
∀
j
∈
dom
iEdg
B
f
-1
iEdg
B
j
=
iEdg
A
h
j
65
64
imp32
⊢
A
∈
UHGraph
∧
B
∈
Y
∧
f
:
Vtx
A
⟶
1-1 onto
Vtx
B
∧
∃
g
g
:
dom
iEdg
A
⟶
1-1 onto
dom
iEdg
B
∧
∀
i
∈
dom
iEdg
A
f
iEdg
A
i
=
iEdg
B
g
i
→
∃
h
h
:
dom
iEdg
B
⟶
1-1 onto
dom
iEdg
A
∧
∀
j
∈
dom
iEdg
B
f
-1
iEdg
B
j
=
iEdg
A
h
j
66
11
65
jca
⊢
A
∈
UHGraph
∧
B
∈
Y
∧
f
:
Vtx
A
⟶
1-1 onto
Vtx
B
∧
∃
g
g
:
dom
iEdg
A
⟶
1-1 onto
dom
iEdg
B
∧
∀
i
∈
dom
iEdg
A
f
iEdg
A
i
=
iEdg
B
g
i
→
f
-1
:
Vtx
B
⟶
1-1 onto
Vtx
A
∧
∃
h
h
:
dom
iEdg
B
⟶
1-1 onto
dom
iEdg
A
∧
∀
j
∈
dom
iEdg
B
f
-1
iEdg
B
j
=
iEdg
A
h
j
67
f1oeq1
⊢
e
=
f
-1
→
e
:
Vtx
B
⟶
1-1 onto
Vtx
A
↔
f
-1
:
Vtx
B
⟶
1-1 onto
Vtx
A
68
imaeq1
⊢
e
=
f
-1
→
e
iEdg
B
j
=
f
-1
iEdg
B
j
69
68
eqeq1d
⊢
e
=
f
-1
→
e
iEdg
B
j
=
iEdg
A
h
j
↔
f
-1
iEdg
B
j
=
iEdg
A
h
j
70
69
ralbidv
⊢
e
=
f
-1
→
∀
j
∈
dom
iEdg
B
e
iEdg
B
j
=
iEdg
A
h
j
↔
∀
j
∈
dom
iEdg
B
f
-1
iEdg
B
j
=
iEdg
A
h
j
71
70
anbi2d
⊢
e
=
f
-1
→
h
:
dom
iEdg
B
⟶
1-1 onto
dom
iEdg
A
∧
∀
j
∈
dom
iEdg
B
e
iEdg
B
j
=
iEdg
A
h
j
↔
h
:
dom
iEdg
B
⟶
1-1 onto
dom
iEdg
A
∧
∀
j
∈
dom
iEdg
B
f
-1
iEdg
B
j
=
iEdg
A
h
j
72
71
exbidv
⊢
e
=
f
-1
→
∃
h
h
:
dom
iEdg
B
⟶
1-1 onto
dom
iEdg
A
∧
∀
j
∈
dom
iEdg
B
e
iEdg
B
j
=
iEdg
A
h
j
↔
∃
h
h
:
dom
iEdg
B
⟶
1-1 onto
dom
iEdg
A
∧
∀
j
∈
dom
iEdg
B
f
-1
iEdg
B
j
=
iEdg
A
h
j
73
67
72
anbi12d
⊢
e
=
f
-1
→
e
:
Vtx
B
⟶
1-1 onto
Vtx
A
∧
∃
h
h
:
dom
iEdg
B
⟶
1-1 onto
dom
iEdg
A
∧
∀
j
∈
dom
iEdg
B
e
iEdg
B
j
=
iEdg
A
h
j
↔
f
-1
:
Vtx
B
⟶
1-1 onto
Vtx
A
∧
∃
h
h
:
dom
iEdg
B
⟶
1-1 onto
dom
iEdg
A
∧
∀
j
∈
dom
iEdg
B
f
-1
iEdg
B
j
=
iEdg
A
h
j
74
8
66
73
spcedv
⊢
A
∈
UHGraph
∧
B
∈
Y
∧
f
:
Vtx
A
⟶
1-1 onto
Vtx
B
∧
∃
g
g
:
dom
iEdg
A
⟶
1-1 onto
dom
iEdg
B
∧
∀
i
∈
dom
iEdg
A
f
iEdg
A
i
=
iEdg
B
g
i
→
∃
e
e
:
Vtx
B
⟶
1-1 onto
Vtx
A
∧
∃
h
h
:
dom
iEdg
B
⟶
1-1 onto
dom
iEdg
A
∧
∀
j
∈
dom
iEdg
B
e
iEdg
B
j
=
iEdg
A
h
j
75
2
1
4
3
isomgr
⊢
B
∈
Y
∧
A
∈
UHGraph
→
B
IsomGr
A
↔
∃
e
e
:
Vtx
B
⟶
1-1 onto
Vtx
A
∧
∃
h
h
:
dom
iEdg
B
⟶
1-1 onto
dom
iEdg
A
∧
∀
j
∈
dom
iEdg
B
e
iEdg
B
j
=
iEdg
A
h
j
76
75
ancoms
⊢
A
∈
UHGraph
∧
B
∈
Y
→
B
IsomGr
A
↔
∃
e
e
:
Vtx
B
⟶
1-1 onto
Vtx
A
∧
∃
h
h
:
dom
iEdg
B
⟶
1-1 onto
dom
iEdg
A
∧
∀
j
∈
dom
iEdg
B
e
iEdg
B
j
=
iEdg
A
h
j
77
76
adantr
⊢
A
∈
UHGraph
∧
B
∈
Y
∧
f
:
Vtx
A
⟶
1-1 onto
Vtx
B
∧
∃
g
g
:
dom
iEdg
A
⟶
1-1 onto
dom
iEdg
B
∧
∀
i
∈
dom
iEdg
A
f
iEdg
A
i
=
iEdg
B
g
i
→
B
IsomGr
A
↔
∃
e
e
:
Vtx
B
⟶
1-1 onto
Vtx
A
∧
∃
h
h
:
dom
iEdg
B
⟶
1-1 onto
dom
iEdg
A
∧
∀
j
∈
dom
iEdg
B
e
iEdg
B
j
=
iEdg
A
h
j
78
74
77
mpbird
⊢
A
∈
UHGraph
∧
B
∈
Y
∧
f
:
Vtx
A
⟶
1-1 onto
Vtx
B
∧
∃
g
g
:
dom
iEdg
A
⟶
1-1 onto
dom
iEdg
B
∧
∀
i
∈
dom
iEdg
A
f
iEdg
A
i
=
iEdg
B
g
i
→
B
IsomGr
A
79
78
ex
⊢
A
∈
UHGraph
∧
B
∈
Y
→
f
:
Vtx
A
⟶
1-1 onto
Vtx
B
∧
∃
g
g
:
dom
iEdg
A
⟶
1-1 onto
dom
iEdg
B
∧
∀
i
∈
dom
iEdg
A
f
iEdg
A
i
=
iEdg
B
g
i
→
B
IsomGr
A
80
79
exlimdv
⊢
A
∈
UHGraph
∧
B
∈
Y
→
∃
f
f
:
Vtx
A
⟶
1-1 onto
Vtx
B
∧
∃
g
g
:
dom
iEdg
A
⟶
1-1 onto
dom
iEdg
B
∧
∀
i
∈
dom
iEdg
A
f
iEdg
A
i
=
iEdg
B
g
i
→
B
IsomGr
A
81
5
80
sylbid
⊢
A
∈
UHGraph
∧
B
∈
Y
→
A
IsomGr
B
→
B
IsomGr
A