Metamath Proof Explorer


Theorem isppw2

Description: Two ways to say that A is a prime power. (Contributed by Mario Carneiro, 7-Apr-2016)

Ref Expression
Assertion isppw2 AΛA0pkA=pk

Proof

Step Hyp Ref Expression
1 isppw AΛA0∃!qqA
2 reu6 ∃!qqApqqAq=p
3 equid p=p
4 breq1 q=pqApA
5 equequ1 q=pq=pp=p
6 4 5 bibi12d q=pqAq=ppAp=p
7 6 rspcva pqqAq=ppAp=p
8 7 adantll ApqqAq=ppAp=p
9 3 8 mpbiri ApqqAq=ppA
10 simplr ApqqAq=pp
11 simpll ApqqAq=pA
12 pcelnn pAppCntApA
13 10 11 12 syl2anc ApqqAq=pppCntApA
14 9 13 mpbird ApqqAq=pppCntA
15 simpr ApqqAq=pq=pq=p
16 15 oveq1d ApqqAq=pq=pqpCntA=ppCntA
17 simpllr ApqqAq=pq=pp
18 pccl pAppCntA0
19 18 ancoms ApppCntA0
20 19 ad2antrr ApqqAq=pq=pppCntA0
21 20 nn0zd ApqqAq=pq=pppCntA
22 pcid pppCntAppCntpppCntA=ppCntA
23 17 21 22 syl2anc ApqqAq=pq=pppCntpppCntA=ppCntA
24 16 23 eqtr4d ApqqAq=pq=pqpCntA=ppCntpppCntA
25 15 oveq1d ApqqAq=pq=pqpCntpppCntA=ppCntpppCntA
26 24 25 eqtr4d ApqqAq=pq=pqpCntA=qpCntpppCntA
27 simprr ApqqAq=pqAq=p
28 27 notbid ApqqAq=p¬qA¬q=p
29 28 biimpar ApqqAq=p¬q=p¬qA
30 simplrl ApqqAq=p¬q=pq
31 simplll ApqqAq=p¬q=pA
32 pceq0 qAqpCntA=0¬qA
33 30 31 32 syl2anc ApqqAq=p¬q=pqpCntA=0¬qA
34 29 33 mpbird ApqqAq=p¬q=pqpCntA=0
35 simprl ApqqAq=pq
36 simplr ApqqAq=pp
37 19 adantr ApqqAq=pppCntA0
38 prmdvdsexpr qpppCntA0qpppCntAq=p
39 35 36 37 38 syl3anc ApqqAq=pqpppCntAq=p
40 39 con3dimp ApqqAq=p¬q=p¬qpppCntA
41 prmnn pp
42 41 adantl App
43 42 19 nnexpcld AppppCntA
44 43 ad2antrr ApqqAq=p¬q=ppppCntA
45 pceq0 qpppCntAqpCntpppCntA=0¬qpppCntA
46 30 44 45 syl2anc ApqqAq=p¬q=pqpCntpppCntA=0¬qpppCntA
47 40 46 mpbird ApqqAq=p¬q=pqpCntpppCntA=0
48 34 47 eqtr4d ApqqAq=p¬q=pqpCntA=qpCntpppCntA
49 26 48 pm2.61dan ApqqAq=pqpCntA=qpCntpppCntA
50 49 expr ApqqAq=pqpCntA=qpCntpppCntA
51 50 ralimdva ApqqAq=pqqpCntA=qpCntpppCntA
52 51 imp ApqqAq=pqqpCntA=qpCntpppCntA
53 nnnn0 AA0
54 53 ad2antrr ApqqAq=pA0
55 43 adantr ApqqAq=ppppCntA
56 55 nnnn0d ApqqAq=ppppCntA0
57 pc11 A0pppCntA0A=pppCntAqqpCntA=qpCntpppCntA
58 54 56 57 syl2anc ApqqAq=pA=pppCntAqqpCntA=qpCntpppCntA
59 52 58 mpbird ApqqAq=pA=pppCntA
60 oveq2 k=ppCntApk=pppCntA
61 60 rspceeqv ppCntAA=pppCntAkA=pk
62 14 59 61 syl2anc ApqqAq=pkA=pk
63 62 ex ApqqAq=pkA=pk
64 prmdvdsexpb qpkqpkq=p
65 64 3coml pkqqpkq=p
66 65 3expa pkqqpkq=p
67 66 ralrimiva pkqqpkq=p
68 67 adantll Apkqqpkq=p
69 breq2 A=pkqAqpk
70 69 bibi1d A=pkqAq=pqpkq=p
71 70 ralbidv A=pkqqAq=pqqpkq=p
72 68 71 syl5ibrcom ApkA=pkqqAq=p
73 72 rexlimdva ApkA=pkqqAq=p
74 63 73 impbid ApqqAq=pkA=pk
75 74 rexbidva ApqqAq=ppkA=pk
76 2 75 bitrid A∃!qqApkA=pk
77 1 76 bitrd AΛA0pkA=pk