| Step |
Hyp |
Ref |
Expression |
| 1 |
|
prmuz2 |
|
| 2 |
|
euclemma |
|
| 3 |
2
|
3expb |
|
| 4 |
3
|
biimpd |
|
| 5 |
4
|
ralrimivva |
|
| 6 |
1 5
|
jca |
|
| 7 |
|
simpl |
|
| 8 |
|
eluz2nn |
|
| 9 |
8
|
adantr |
|
| 10 |
9
|
nnzd |
|
| 11 |
|
iddvds |
|
| 12 |
10 11
|
syl |
|
| 13 |
|
nncn |
|
| 14 |
9 13
|
syl |
|
| 15 |
|
nncn |
|
| 16 |
15
|
ad2antrl |
|
| 17 |
|
nnne0 |
|
| 18 |
17
|
ad2antrl |
|
| 19 |
14 16 18
|
divcan1d |
|
| 20 |
12 19
|
breqtrrd |
|
| 21 |
20
|
adantr |
|
| 22 |
|
simprr |
|
| 23 |
|
simprl |
|
| 24 |
|
nndivdvds |
|
| 25 |
9 23 24
|
syl2anc |
|
| 26 |
22 25
|
mpbid |
|
| 27 |
26
|
nnzd |
|
| 28 |
|
nnz |
|
| 29 |
28
|
ad2antrl |
|
| 30 |
27 29
|
jca |
|
| 31 |
|
oveq1 |
|
| 32 |
31
|
breq2d |
|
| 33 |
|
breq2 |
|
| 34 |
33
|
orbi1d |
|
| 35 |
32 34
|
imbi12d |
|
| 36 |
|
oveq2 |
|
| 37 |
36
|
breq2d |
|
| 38 |
|
breq2 |
|
| 39 |
38
|
orbi2d |
|
| 40 |
37 39
|
imbi12d |
|
| 41 |
35 40
|
rspc2va |
|
| 42 |
30 41
|
sylan |
|
| 43 |
21 42
|
mpd |
|
| 44 |
|
dvdsle |
|
| 45 |
10 26 44
|
syl2anc |
|
| 46 |
14
|
div1d |
|
| 47 |
46
|
breq1d |
|
| 48 |
45 47
|
sylibrd |
|
| 49 |
|
nnrp |
|
| 50 |
49
|
rpregt0d |
|
| 51 |
50
|
ad2antrl |
|
| 52 |
|
1rp |
|
| 53 |
|
rpregt0 |
|
| 54 |
52 53
|
mp1i |
|
| 55 |
|
nnrp |
|
| 56 |
9 55
|
syl |
|
| 57 |
56
|
rpregt0d |
|
| 58 |
|
lediv2 |
|
| 59 |
51 54 57 58
|
syl3anc |
|
| 60 |
48 59
|
sylibrd |
|
| 61 |
|
nnle1eq1 |
|
| 62 |
61
|
ad2antrl |
|
| 63 |
60 62
|
sylibd |
|
| 64 |
|
nnnn0 |
|
| 65 |
64
|
ad2antrl |
|
| 66 |
65
|
adantr |
|
| 67 |
|
nnnn0 |
|
| 68 |
9 67
|
syl |
|
| 69 |
68
|
adantr |
|
| 70 |
|
simplrr |
|
| 71 |
|
simpr |
|
| 72 |
|
dvdseq |
|
| 73 |
66 69 70 71 72
|
syl22anc |
|
| 74 |
73
|
ex |
|
| 75 |
63 74
|
orim12d |
|
| 76 |
75
|
imp |
|
| 77 |
43 76
|
syldan |
|
| 78 |
77
|
an32s |
|
| 79 |
78
|
expr |
|
| 80 |
79
|
ralrimiva |
|
| 81 |
|
isprm2 |
|
| 82 |
7 80 81
|
sylanbrc |
|
| 83 |
6 82
|
impbii |
|