Metamath Proof Explorer


Theorem isssc

Description: Value of the subcategory subset relation when the arguments are known functions. (Contributed by Mario Carneiro, 6-Jan-2017)

Ref Expression
Hypotheses isssc.1 φHFnS×S
isssc.2 φJFnT×T
isssc.3 φTV
Assertion isssc φHcatJSTxSySxHyxJy

Proof

Step Hyp Ref Expression
1 isssc.1 φHFnS×S
2 isssc.2 φJFnT×T
3 isssc.3 φTV
4 brssc HcatJtJFnt×ts𝒫tHzs×s𝒫Jz
5 fndm JFnt×tdomJ=t×t
6 5 adantl φJFnt×tdomJ=t×t
7 2 adantr φJFnt×tJFnT×T
8 7 fndmd φJFnt×tdomJ=T×T
9 6 8 eqtr3d φJFnt×tt×t=T×T
10 9 dmeqd φJFnt×tdomt×t=domT×T
11 dmxpid domt×t=t
12 dmxpid domT×T=T
13 10 11 12 3eqtr3g φJFnt×tt=T
14 13 ex φJFnt×tt=T
15 id t=Tt=T
16 15 sqxpeqd t=Tt×t=T×T
17 16 fneq2d t=TJFnt×tJFnT×T
18 2 17 syl5ibrcom φt=TJFnt×t
19 14 18 impbid φJFnt×tt=T
20 19 anbi1d φJFnt×ts𝒫tHzs×s𝒫Jzt=Ts𝒫tHzs×s𝒫Jz
21 20 exbidv φtJFnt×ts𝒫tHzs×s𝒫Jztt=Ts𝒫tHzs×s𝒫Jz
22 4 21 bitrid φHcatJtt=Ts𝒫tHzs×s𝒫Jz
23 pweq t=T𝒫t=𝒫T
24 23 rexeqdv t=Ts𝒫tHzs×s𝒫Jzs𝒫THzs×s𝒫Jz
25 24 ceqsexgv TVtt=Ts𝒫tHzs×s𝒫Jzs𝒫THzs×s𝒫Jz
26 3 25 syl φtt=Ts𝒫tHzs×s𝒫Jzs𝒫THzs×s𝒫Jz
27 22 26 bitrd φHcatJs𝒫THzs×s𝒫Jz
28 df-rex s𝒫THzs×s𝒫Jzss𝒫THzs×s𝒫Jz
29 3anass HVHFns×szs×sHz𝒫JzHVHFns×szs×sHz𝒫Jz
30 elixp2 Hzs×s𝒫JzHVHFns×szs×sHz𝒫Jz
31 vex sV
32 31 31 xpex s×sV
33 fnex HFns×ss×sVHV
34 32 33 mpan2 HFns×sHV
35 34 adantr HFns×szs×sHz𝒫JzHV
36 35 pm4.71ri HFns×szs×sHz𝒫JzHVHFns×szs×sHz𝒫Jz
37 29 30 36 3bitr4i Hzs×s𝒫JzHFns×szs×sHz𝒫Jz
38 fndm HFns×sdomH=s×s
39 38 adantl φHFns×sdomH=s×s
40 1 adantr φHFns×sHFnS×S
41 40 fndmd φHFns×sdomH=S×S
42 39 41 eqtr3d φHFns×ss×s=S×S
43 42 dmeqd φHFns×sdoms×s=domS×S
44 dmxpid doms×s=s
45 dmxpid domS×S=S
46 43 44 45 3eqtr3g φHFns×ss=S
47 46 ex φHFns×ss=S
48 id s=Ss=S
49 48 sqxpeqd s=Ss×s=S×S
50 49 fneq2d s=SHFns×sHFnS×S
51 1 50 syl5ibrcom φs=SHFns×s
52 47 51 impbid φHFns×ss=S
53 52 anbi1d φHFns×szs×sHz𝒫Jzs=Szs×sHz𝒫Jz
54 37 53 bitrid φHzs×s𝒫Jzs=Szs×sHz𝒫Jz
55 54 anbi2d φs𝒫THzs×s𝒫Jzs𝒫Ts=Szs×sHz𝒫Jz
56 an12 s𝒫Ts=Szs×sHz𝒫Jzs=Ss𝒫Tzs×sHz𝒫Jz
57 55 56 bitrdi φs𝒫THzs×s𝒫Jzs=Ss𝒫Tzs×sHz𝒫Jz
58 57 exbidv φss𝒫THzs×s𝒫Jzss=Ss𝒫Tzs×sHz𝒫Jz
59 28 58 bitrid φs𝒫THzs×s𝒫Jzss=Ss𝒫Tzs×sHz𝒫Jz
60 exsimpl ss=Ss𝒫Tzs×sHz𝒫Jzss=S
61 isset SVss=S
62 60 61 sylibr ss=Ss𝒫Tzs×sHz𝒫JzSV
63 62 a1i φss=Ss𝒫Tzs×sHz𝒫JzSV
64 ssexg STTVSV
65 64 expcom TVSTSV
66 3 65 syl φSTSV
67 66 adantrd φSTxSySxHyxJySV
68 31 elpw s𝒫TsT
69 sseq1 s=SsTST
70 68 69 bitrid s=Ss𝒫TST
71 49 raleqdv s=Szs×sHz𝒫JzzS×SHz𝒫Jz
72 fvex HzV
73 72 elpw Hz𝒫JzHzJz
74 fveq2 z=xyHz=Hxy
75 df-ov xHy=Hxy
76 74 75 eqtr4di z=xyHz=xHy
77 fveq2 z=xyJz=Jxy
78 df-ov xJy=Jxy
79 77 78 eqtr4di z=xyJz=xJy
80 76 79 sseq12d z=xyHzJzxHyxJy
81 73 80 bitrid z=xyHz𝒫JzxHyxJy
82 81 ralxp zS×SHz𝒫JzxSySxHyxJy
83 71 82 bitrdi s=Szs×sHz𝒫JzxSySxHyxJy
84 70 83 anbi12d s=Ss𝒫Tzs×sHz𝒫JzSTxSySxHyxJy
85 84 ceqsexgv SVss=Ss𝒫Tzs×sHz𝒫JzSTxSySxHyxJy
86 85 a1i φSVss=Ss𝒫Tzs×sHz𝒫JzSTxSySxHyxJy
87 63 67 86 pm5.21ndd φss=Ss𝒫Tzs×sHz𝒫JzSTxSySxHyxJy
88 27 59 87 3bitrd φHcatJSTxSySxHyxJy