Description: A metric space is totally bounded iff there is a finite ε-net for every positive ε. This differs from the definition in providing a finite set of ball centers rather than a finite set of balls. (Contributed by Mario Carneiro, 12-Sep-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | istotbnd3 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | istotbnd | |
|
2 | oveq1 | |
|
3 | 2 | eqeq2d | |
4 | 3 | ac6sfi | |
5 | 4 | ex | |
6 | 5 | ad2antlr | |
7 | simprrl | |
|
8 | 7 | frnd | |
9 | simplr | |
|
10 | 7 | ffnd | |
11 | dffn4 | |
|
12 | 10 11 | sylib | |
13 | fofi | |
|
14 | 9 12 13 | syl2anc | |
15 | elfpw | |
|
16 | 8 14 15 | sylanbrc | |
17 | 2 | eleq2d | |
18 | 17 | rexrn | |
19 | 10 18 | syl | |
20 | eliun | |
|
21 | eliun | |
|
22 | 19 20 21 | 3bitr4g | |
23 | 22 | eqrdv | |
24 | simprrr | |
|
25 | iuneq2 | |
|
26 | 24 25 | syl | |
27 | uniiun | |
|
28 | simprl | |
|
29 | 27 28 | eqtr3id | |
30 | 23 26 29 | 3eqtr2d | |
31 | iuneq1 | |
|
32 | 31 | eqeq1d | |
33 | 32 | rspcev | |
34 | 16 30 33 | syl2anc | |
35 | 34 | expr | |
36 | 35 | exlimdv | |
37 | 6 36 | syld | |
38 | 37 | expimpd | |
39 | 38 | rexlimdva | |
40 | elfpw | |
|
41 | 40 | simprbi | |
42 | 41 | ad2antrl | |
43 | mptfi | |
|
44 | rnfi | |
|
45 | 42 43 44 | 3syl | |
46 | ovex | |
|
47 | 46 | dfiun3 | |
48 | simprr | |
|
49 | 47 48 | eqtr3id | |
50 | eqid | |
|
51 | 50 | rnmpt | |
52 | 40 | simplbi | |
53 | 52 | ad2antrl | |
54 | ssrexv | |
|
55 | 53 54 | syl | |
56 | 55 | ss2abdv | |
57 | 51 56 | eqsstrid | |
58 | unieq | |
|
59 | 58 | eqeq1d | |
60 | ssabral | |
|
61 | sseq1 | |
|
62 | 60 61 | bitr3id | |
63 | 59 62 | anbi12d | |
64 | 63 | rspcev | |
65 | 45 49 57 64 | syl12anc | |
66 | 65 | expr | |
67 | 66 | rexlimdva | |
68 | 39 67 | impbid | |
69 | 68 | ralbidv | |
70 | 69 | pm5.32i | |
71 | 1 70 | bitri | |