Metamath Proof Explorer


Theorem istotbnd3

Description: A metric space is totally bounded iff there is a finite ε-net for every positive ε. This differs from the definition in providing a finite set of ball centers rather than a finite set of balls. (Contributed by Mario Carneiro, 12-Sep-2015)

Ref Expression
Assertion istotbnd3 MTotBndXMMetXd+v𝒫XFinxvxballMd=X

Proof

Step Hyp Ref Expression
1 istotbnd MTotBndXMMetXd+wFinw=XbwxXb=xballMd
2 oveq1 x=fbxballMd=fbballMd
3 2 eqeq2d x=fbb=xballMdb=fbballMd
4 3 ac6sfi wFinbwxXb=xballMdff:wXbwb=fbballMd
5 4 ex wFinbwxXb=xballMdff:wXbwb=fbballMd
6 5 ad2antlr MMetXwFinw=XbwxXb=xballMdff:wXbwb=fbballMd
7 simprrl MMetXwFinw=Xf:wXbwb=fbballMdf:wX
8 7 frnd MMetXwFinw=Xf:wXbwb=fbballMdranfX
9 simplr MMetXwFinw=Xf:wXbwb=fbballMdwFin
10 7 ffnd MMetXwFinw=Xf:wXbwb=fbballMdfFnw
11 dffn4 fFnwf:wontoranf
12 10 11 sylib MMetXwFinw=Xf:wXbwb=fbballMdf:wontoranf
13 fofi wFinf:wontoranfranfFin
14 9 12 13 syl2anc MMetXwFinw=Xf:wXbwb=fbballMdranfFin
15 elfpw ranf𝒫XFinranfXranfFin
16 8 14 15 sylanbrc MMetXwFinw=Xf:wXbwb=fbballMdranf𝒫XFin
17 2 eleq2d x=fbvxballMdvfbballMd
18 17 rexrn fFnwxranfvxballMdbwvfbballMd
19 10 18 syl MMetXwFinw=Xf:wXbwb=fbballMdxranfvxballMdbwvfbballMd
20 eliun vxranfxballMdxranfvxballMd
21 eliun vbwfbballMdbwvfbballMd
22 19 20 21 3bitr4g MMetXwFinw=Xf:wXbwb=fbballMdvxranfxballMdvbwfbballMd
23 22 eqrdv MMetXwFinw=Xf:wXbwb=fbballMdxranfxballMd=bwfbballMd
24 simprrr MMetXwFinw=Xf:wXbwb=fbballMdbwb=fbballMd
25 iuneq2 bwb=fbballMdbwb=bwfbballMd
26 24 25 syl MMetXwFinw=Xf:wXbwb=fbballMdbwb=bwfbballMd
27 uniiun w=bwb
28 simprl MMetXwFinw=Xf:wXbwb=fbballMdw=X
29 27 28 eqtr3id MMetXwFinw=Xf:wXbwb=fbballMdbwb=X
30 23 26 29 3eqtr2d MMetXwFinw=Xf:wXbwb=fbballMdxranfxballMd=X
31 iuneq1 v=ranfxvxballMd=xranfxballMd
32 31 eqeq1d v=ranfxvxballMd=XxranfxballMd=X
33 32 rspcev ranf𝒫XFinxranfxballMd=Xv𝒫XFinxvxballMd=X
34 16 30 33 syl2anc MMetXwFinw=Xf:wXbwb=fbballMdv𝒫XFinxvxballMd=X
35 34 expr MMetXwFinw=Xf:wXbwb=fbballMdv𝒫XFinxvxballMd=X
36 35 exlimdv MMetXwFinw=Xff:wXbwb=fbballMdv𝒫XFinxvxballMd=X
37 6 36 syld MMetXwFinw=XbwxXb=xballMdv𝒫XFinxvxballMd=X
38 37 expimpd MMetXwFinw=XbwxXb=xballMdv𝒫XFinxvxballMd=X
39 38 rexlimdva MMetXwFinw=XbwxXb=xballMdv𝒫XFinxvxballMd=X
40 elfpw v𝒫XFinvXvFin
41 40 simprbi v𝒫XFinvFin
42 41 ad2antrl MMetXv𝒫XFinxvxballMd=XvFin
43 mptfi vFinxvxballMdFin
44 rnfi xvxballMdFinranxvxballMdFin
45 42 43 44 3syl MMetXv𝒫XFinxvxballMd=XranxvxballMdFin
46 ovex xballMdV
47 46 dfiun3 xvxballMd=ranxvxballMd
48 simprr MMetXv𝒫XFinxvxballMd=XxvxballMd=X
49 47 48 eqtr3id MMetXv𝒫XFinxvxballMd=XranxvxballMd=X
50 eqid xvxballMd=xvxballMd
51 50 rnmpt ranxvxballMd=b|xvb=xballMd
52 40 simplbi v𝒫XFinvX
53 52 ad2antrl MMetXv𝒫XFinxvxballMd=XvX
54 ssrexv vXxvb=xballMdxXb=xballMd
55 53 54 syl MMetXv𝒫XFinxvxballMd=Xxvb=xballMdxXb=xballMd
56 55 ss2abdv MMetXv𝒫XFinxvxballMd=Xb|xvb=xballMdb|xXb=xballMd
57 51 56 eqsstrid MMetXv𝒫XFinxvxballMd=XranxvxballMdb|xXb=xballMd
58 unieq w=ranxvxballMdw=ranxvxballMd
59 58 eqeq1d w=ranxvxballMdw=XranxvxballMd=X
60 ssabral wb|xXb=xballMdbwxXb=xballMd
61 sseq1 w=ranxvxballMdwb|xXb=xballMdranxvxballMdb|xXb=xballMd
62 60 61 bitr3id w=ranxvxballMdbwxXb=xballMdranxvxballMdb|xXb=xballMd
63 59 62 anbi12d w=ranxvxballMdw=XbwxXb=xballMdranxvxballMd=XranxvxballMdb|xXb=xballMd
64 63 rspcev ranxvxballMdFinranxvxballMd=XranxvxballMdb|xXb=xballMdwFinw=XbwxXb=xballMd
65 45 49 57 64 syl12anc MMetXv𝒫XFinxvxballMd=XwFinw=XbwxXb=xballMd
66 65 expr MMetXv𝒫XFinxvxballMd=XwFinw=XbwxXb=xballMd
67 66 rexlimdva MMetXv𝒫XFinxvxballMd=XwFinw=XbwxXb=xballMd
68 39 67 impbid MMetXwFinw=XbwxXb=xballMdv𝒫XFinxvxballMd=X
69 68 ralbidv MMetXd+wFinw=XbwxXb=xballMdd+v𝒫XFinxvxballMd=X
70 69 pm5.32i MMetXd+wFinw=XbwxXb=xballMdMMetXd+v𝒫XFinxvxballMd=X
71 1 70 bitri MTotBndXMMetXd+v𝒫XFinxvxballMd=X