Metamath Proof Explorer


Theorem isumltss

Description: A partial sum of a series with positive terms is less than the infinite sum. (Contributed by Jeff Madsen, 2-Sep-2009) (Proof shortened by Mario Carneiro, 12-Mar-2015)

Ref Expression
Hypotheses isumltss.1 Z=M
isumltss.2 φM
isumltss.3 φAFin
isumltss.4 φAZ
isumltss.5 φkZFk=B
isumltss.6 φkZB+
isumltss.7 φseqM+Fdom
Assertion isumltss φkAB<kZB

Proof

Step Hyp Ref Expression
1 isumltss.1 Z=M
2 isumltss.2 φM
3 isumltss.3 φAFin
4 isumltss.4 φAZ
5 isumltss.5 φkZFk=B
6 isumltss.6 φkZB+
7 isumltss.7 φseqM+Fdom
8 1 uzinf M¬ZFin
9 2 8 syl φ¬ZFin
10 ssdif0 ZAZA=
11 eqss A=ZAZZA
12 eleq1 A=ZAFinZFin
13 3 12 syl5ibcom φA=ZZFin
14 11 13 biimtrrid φAZZAZFin
15 4 14 mpand φZAZFin
16 10 15 biimtrrid φZA=ZFin
17 9 16 mtod φ¬ZA=
18 neq0 ¬ZA=xxZA
19 17 18 sylib φxxZA
20 3 adantr φxZAAFin
21 4 adantr φxZAAZ
22 21 sselda φxZAkAkZ
23 6 adantlr φxZAkZB+
24 23 rpred φxZAkZB
25 22 24 syldan φxZAkAB
26 20 25 fsumrecl φxZAkAB
27 snfi xFin
28 unfi AFinxFinAxFin
29 20 27 28 sylancl φxZAAxFin
30 eldifi xZAxZ
31 30 snssd xZAxZ
32 4 31 anim12i φxZAAZxZ
33 unss AZxZAxZ
34 32 33 sylib φxZAAxZ
35 34 sselda φxZAkAxkZ
36 35 24 syldan φxZAkAxB
37 29 36 fsumrecl φxZAkAxB
38 2 adantr φxZAM
39 5 adantlr φxZAkZFk=B
40 7 adantr φxZAseqM+Fdom
41 1 38 39 24 40 isumrecl φxZAkZB
42 27 a1i φxZAxFin
43 vex xV
44 43 snnz x
45 44 a1i φxZAx
46 31 adantl φxZAxZ
47 46 sselda φxZAkxkZ
48 47 23 syldan φxZAkxB+
49 42 45 48 fsumrpcl φxZAkxB+
50 26 49 ltaddrpd φxZAkAB<kAB+kxB
51 eldifn xZA¬xA
52 51 adantl φxZA¬xA
53 disjsn Ax=¬xA
54 52 53 sylibr φxZAAx=
55 eqidd φxZAAx=Ax
56 23 rpcnd φxZAkZB
57 35 56 syldan φxZAkAxB
58 54 55 29 57 fsumsplit φxZAkAxB=kAB+kxB
59 50 58 breqtrrd φxZAkAB<kAxB
60 23 rpge0d φxZAkZ0B
61 1 38 29 34 39 24 60 40 isumless φxZAkAxBkZB
62 26 37 41 59 61 ltletrd φxZAkAB<kZB
63 19 62 exlimddv φkAB<kZB