Description: A partial sum of a series with positive terms is less than the infinite sum. (Contributed by Jeff Madsen, 2-Sep-2009) (Proof shortened by Mario Carneiro, 12-Mar-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | isumltss.1 | |
|
isumltss.2 | |
||
isumltss.3 | |
||
isumltss.4 | |
||
isumltss.5 | |
||
isumltss.6 | |
||
isumltss.7 | |
||
Assertion | isumltss | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isumltss.1 | |
|
2 | isumltss.2 | |
|
3 | isumltss.3 | |
|
4 | isumltss.4 | |
|
5 | isumltss.5 | |
|
6 | isumltss.6 | |
|
7 | isumltss.7 | |
|
8 | 1 | uzinf | |
9 | 2 8 | syl | |
10 | ssdif0 | |
|
11 | eqss | |
|
12 | eleq1 | |
|
13 | 3 12 | syl5ibcom | |
14 | 11 13 | biimtrrid | |
15 | 4 14 | mpand | |
16 | 10 15 | biimtrrid | |
17 | 9 16 | mtod | |
18 | neq0 | |
|
19 | 17 18 | sylib | |
20 | 3 | adantr | |
21 | 4 | adantr | |
22 | 21 | sselda | |
23 | 6 | adantlr | |
24 | 23 | rpred | |
25 | 22 24 | syldan | |
26 | 20 25 | fsumrecl | |
27 | snfi | |
|
28 | unfi | |
|
29 | 20 27 28 | sylancl | |
30 | eldifi | |
|
31 | 30 | snssd | |
32 | 4 31 | anim12i | |
33 | unss | |
|
34 | 32 33 | sylib | |
35 | 34 | sselda | |
36 | 35 24 | syldan | |
37 | 29 36 | fsumrecl | |
38 | 2 | adantr | |
39 | 5 | adantlr | |
40 | 7 | adantr | |
41 | 1 38 39 24 40 | isumrecl | |
42 | 27 | a1i | |
43 | vex | |
|
44 | 43 | snnz | |
45 | 44 | a1i | |
46 | 31 | adantl | |
47 | 46 | sselda | |
48 | 47 23 | syldan | |
49 | 42 45 48 | fsumrpcl | |
50 | 26 49 | ltaddrpd | |
51 | eldifn | |
|
52 | 51 | adantl | |
53 | disjsn | |
|
54 | 52 53 | sylibr | |
55 | eqidd | |
|
56 | 23 | rpcnd | |
57 | 35 56 | syldan | |
58 | 54 55 29 57 | fsumsplit | |
59 | 50 58 | breqtrrd | |
60 | 23 | rpge0d | |
61 | 1 38 29 34 39 24 60 40 | isumless | |
62 | 26 37 41 59 61 | ltletrd | |
63 | 19 62 | exlimddv | |