| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isumltss.1 |
|
| 2 |
|
isumltss.2 |
|
| 3 |
|
isumltss.3 |
|
| 4 |
|
isumltss.4 |
|
| 5 |
|
isumltss.5 |
|
| 6 |
|
isumltss.6 |
|
| 7 |
|
isumltss.7 |
|
| 8 |
1
|
uzinf |
|
| 9 |
2 8
|
syl |
|
| 10 |
|
ssdif0 |
|
| 11 |
|
eqss |
|
| 12 |
|
eleq1 |
|
| 13 |
3 12
|
syl5ibcom |
|
| 14 |
11 13
|
biimtrrid |
|
| 15 |
4 14
|
mpand |
|
| 16 |
10 15
|
biimtrrid |
|
| 17 |
9 16
|
mtod |
|
| 18 |
|
neq0 |
|
| 19 |
17 18
|
sylib |
|
| 20 |
3
|
adantr |
|
| 21 |
4
|
adantr |
|
| 22 |
21
|
sselda |
|
| 23 |
6
|
adantlr |
|
| 24 |
23
|
rpred |
|
| 25 |
22 24
|
syldan |
|
| 26 |
20 25
|
fsumrecl |
|
| 27 |
|
snfi |
|
| 28 |
|
unfi |
|
| 29 |
20 27 28
|
sylancl |
|
| 30 |
|
eldifi |
|
| 31 |
30
|
snssd |
|
| 32 |
4 31
|
anim12i |
|
| 33 |
|
unss |
|
| 34 |
32 33
|
sylib |
|
| 35 |
34
|
sselda |
|
| 36 |
35 24
|
syldan |
|
| 37 |
29 36
|
fsumrecl |
|
| 38 |
2
|
adantr |
|
| 39 |
5
|
adantlr |
|
| 40 |
7
|
adantr |
|
| 41 |
1 38 39 24 40
|
isumrecl |
|
| 42 |
27
|
a1i |
|
| 43 |
|
vex |
|
| 44 |
43
|
snnz |
|
| 45 |
44
|
a1i |
|
| 46 |
31
|
adantl |
|
| 47 |
46
|
sselda |
|
| 48 |
47 23
|
syldan |
|
| 49 |
42 45 48
|
fsumrpcl |
|
| 50 |
26 49
|
ltaddrpd |
|
| 51 |
|
eldifn |
|
| 52 |
51
|
adantl |
|
| 53 |
|
disjsn |
|
| 54 |
52 53
|
sylibr |
|
| 55 |
|
eqidd |
|
| 56 |
23
|
rpcnd |
|
| 57 |
35 56
|
syldan |
|
| 58 |
54 55 29 57
|
fsumsplit |
|
| 59 |
50 58
|
breqtrrd |
|
| 60 |
23
|
rpge0d |
|
| 61 |
1 38 29 34 39 24 60 40
|
isumless |
|
| 62 |
26 37 41 59 61
|
ltletrd |
|
| 63 |
19 62
|
exlimddv |
|