| Step |
Hyp |
Ref |
Expression |
| 1 |
|
climcnds.1 |
|
| 2 |
|
climcnds.2 |
|
| 3 |
|
climcnds.3 |
|
| 4 |
|
climcnds.4 |
|
| 5 |
|
oveq1 |
|
| 6 |
|
0p1e1 |
|
| 7 |
5 6
|
eqtrdi |
|
| 8 |
7
|
oveq2d |
|
| 9 |
|
2cn |
|
| 10 |
|
exp1 |
|
| 11 |
9 10
|
ax-mp |
|
| 12 |
|
df-2 |
|
| 13 |
11 12
|
eqtri |
|
| 14 |
8 13
|
eqtrdi |
|
| 15 |
14
|
oveq1d |
|
| 16 |
|
ax-1cn |
|
| 17 |
16 16
|
pncan3oi |
|
| 18 |
15 17
|
eqtrdi |
|
| 19 |
18
|
fveq2d |
|
| 20 |
|
fveq2 |
|
| 21 |
19 20
|
breq12d |
|
| 22 |
21
|
imbi2d |
|
| 23 |
|
oveq1 |
|
| 24 |
23
|
oveq2d |
|
| 25 |
24
|
fvoveq1d |
|
| 26 |
|
fveq2 |
|
| 27 |
25 26
|
breq12d |
|
| 28 |
27
|
imbi2d |
|
| 29 |
|
oveq1 |
|
| 30 |
29
|
oveq2d |
|
| 31 |
30
|
fvoveq1d |
|
| 32 |
|
fveq2 |
|
| 33 |
31 32
|
breq12d |
|
| 34 |
33
|
imbi2d |
|
| 35 |
|
oveq1 |
|
| 36 |
35
|
oveq2d |
|
| 37 |
36
|
fvoveq1d |
|
| 38 |
|
fveq2 |
|
| 39 |
37 38
|
breq12d |
|
| 40 |
39
|
imbi2d |
|
| 41 |
|
fveq2 |
|
| 42 |
41
|
eleq1d |
|
| 43 |
1
|
ralrimiva |
|
| 44 |
|
1nn |
|
| 45 |
44
|
a1i |
|
| 46 |
42 43 45
|
rspcdva |
|
| 47 |
46
|
leidd |
|
| 48 |
46
|
recnd |
|
| 49 |
48
|
mullidd |
|
| 50 |
47 49
|
breqtrrd |
|
| 51 |
|
1z |
|
| 52 |
|
eqidd |
|
| 53 |
51 52
|
seq1i |
|
| 54 |
|
0z |
|
| 55 |
|
fveq2 |
|
| 56 |
|
oveq2 |
|
| 57 |
|
exp0 |
|
| 58 |
9 57
|
ax-mp |
|
| 59 |
56 58
|
eqtrdi |
|
| 60 |
59
|
fveq2d |
|
| 61 |
59 60
|
oveq12d |
|
| 62 |
55 61
|
eqeq12d |
|
| 63 |
4
|
ralrimiva |
|
| 64 |
|
0nn0 |
|
| 65 |
64
|
a1i |
|
| 66 |
62 63 65
|
rspcdva |
|
| 67 |
54 66
|
seq1i |
|
| 68 |
50 53 67
|
3brtr4d |
|
| 69 |
|
fzfid |
|
| 70 |
|
simpl |
|
| 71 |
|
2nn |
|
| 72 |
|
peano2nn0 |
|
| 73 |
72
|
adantl |
|
| 74 |
|
nnexpcl |
|
| 75 |
71 73 74
|
sylancr |
|
| 76 |
|
elfzuz |
|
| 77 |
|
eluznn |
|
| 78 |
75 76 77
|
syl2an |
|
| 79 |
70 78 1
|
syl2an2r |
|
| 80 |
|
fveq2 |
|
| 81 |
80
|
eleq1d |
|
| 82 |
43
|
adantr |
|
| 83 |
81 82 75
|
rspcdva |
|
| 84 |
83
|
adantr |
|
| 85 |
|
simpr |
|
| 86 |
|
simplll |
|
| 87 |
75
|
adantr |
|
| 88 |
|
elfzuz |
|
| 89 |
87 88 77
|
syl2an |
|
| 90 |
86 89 1
|
syl2anc |
|
| 91 |
|
simplll |
|
| 92 |
|
elfzuz |
|
| 93 |
87 92 77
|
syl2an |
|
| 94 |
91 93 3
|
syl2anc |
|
| 95 |
85 90 94
|
monoord2 |
|
| 96 |
95
|
ralrimiva |
|
| 97 |
|
fveq2 |
|
| 98 |
97
|
breq1d |
|
| 99 |
98
|
rspccva |
|
| 100 |
96 76 99
|
syl2an |
|
| 101 |
69 79 84 100
|
fsumle |
|
| 102 |
|
fzfid |
|
| 103 |
|
hashcl |
|
| 104 |
102 103
|
syl |
|
| 105 |
104
|
nn0cnd |
|
| 106 |
75
|
nnred |
|
| 107 |
106
|
recnd |
|
| 108 |
|
hashcl |
|
| 109 |
69 108
|
syl |
|
| 110 |
109
|
nn0cnd |
|
| 111 |
|
2z |
|
| 112 |
|
zexpcl |
|
| 113 |
111 73 112
|
sylancr |
|
| 114 |
|
2re |
|
| 115 |
|
1le2 |
|
| 116 |
|
nn0p1nn |
|
| 117 |
116
|
adantl |
|
| 118 |
|
nnuz |
|
| 119 |
117 118
|
eleqtrdi |
|
| 120 |
|
leexp2a |
|
| 121 |
114 115 119 120
|
mp3an12i |
|
| 122 |
11 121
|
eqbrtrrid |
|
| 123 |
111
|
eluz1i |
|
| 124 |
113 122 123
|
sylanbrc |
|
| 125 |
|
uz2m1nn |
|
| 126 |
124 125
|
syl |
|
| 127 |
126 118
|
eleqtrdi |
|
| 128 |
|
peano2zm |
|
| 129 |
113 128
|
syl |
|
| 130 |
|
peano2nn0 |
|
| 131 |
73 130
|
syl |
|
| 132 |
|
zexpcl |
|
| 133 |
111 131 132
|
sylancr |
|
| 134 |
|
peano2zm |
|
| 135 |
133 134
|
syl |
|
| 136 |
113
|
zred |
|
| 137 |
133
|
zred |
|
| 138 |
|
1red |
|
| 139 |
73
|
nn0zd |
|
| 140 |
|
uzid |
|
| 141 |
|
peano2uz |
|
| 142 |
|
leexp2a |
|
| 143 |
114 115 142
|
mp3an12 |
|
| 144 |
139 140 141 143
|
4syl |
|
| 145 |
136 137 138 144
|
lesub1dd |
|
| 146 |
|
eluz2 |
|
| 147 |
129 135 145 146
|
syl3anbrc |
|
| 148 |
|
elfzuzb |
|
| 149 |
127 147 148
|
sylanbrc |
|
| 150 |
|
fzsplit |
|
| 151 |
149 150
|
syl |
|
| 152 |
|
npcan |
|
| 153 |
107 16 152
|
sylancl |
|
| 154 |
153
|
oveq1d |
|
| 155 |
154
|
uneq2d |
|
| 156 |
151 155
|
eqtrd |
|
| 157 |
156
|
fveq2d |
|
| 158 |
|
expp1 |
|
| 159 |
9 73 158
|
sylancr |
|
| 160 |
107
|
times2d |
|
| 161 |
159 160
|
eqtrd |
|
| 162 |
161
|
oveq1d |
|
| 163 |
|
1cnd |
|
| 164 |
107 107 163
|
addsubd |
|
| 165 |
162 164
|
eqtrd |
|
| 166 |
|
uztrn |
|
| 167 |
147 127 166
|
syl2anc |
|
| 168 |
167 118
|
eleqtrrdi |
|
| 169 |
168
|
nnnn0d |
|
| 170 |
|
hashfz1 |
|
| 171 |
169 170
|
syl |
|
| 172 |
126
|
nnnn0d |
|
| 173 |
|
hashfz1 |
|
| 174 |
172 173
|
syl |
|
| 175 |
174
|
oveq1d |
|
| 176 |
165 171 175
|
3eqtr4d |
|
| 177 |
106
|
ltm1d |
|
| 178 |
|
fzdisj |
|
| 179 |
177 178
|
syl |
|
| 180 |
|
hashun |
|
| 181 |
102 69 179 180
|
syl3anc |
|
| 182 |
157 176 181
|
3eqtr3d |
|
| 183 |
105 107 110 182
|
addcanad |
|
| 184 |
183
|
oveq1d |
|
| 185 |
|
fveq2 |
|
| 186 |
|
oveq2 |
|
| 187 |
186
|
fveq2d |
|
| 188 |
186 187
|
oveq12d |
|
| 189 |
185 188
|
eqeq12d |
|
| 190 |
63
|
adantr |
|
| 191 |
189 190 73
|
rspcdva |
|
| 192 |
83
|
recnd |
|
| 193 |
|
fsumconst |
|
| 194 |
69 192 193
|
syl2anc |
|
| 195 |
184 191 194
|
3eqtr4d |
|
| 196 |
101 195
|
breqtrrd |
|
| 197 |
|
elfznn |
|
| 198 |
70 197 1
|
syl2an |
|
| 199 |
102 198
|
fsumrecl |
|
| 200 |
69 79
|
fsumrecl |
|
| 201 |
|
nn0uz |
|
| 202 |
|
0zd |
|
| 203 |
|
simpr |
|
| 204 |
|
nnexpcl |
|
| 205 |
71 203 204
|
sylancr |
|
| 206 |
205
|
nnred |
|
| 207 |
|
fveq2 |
|
| 208 |
207
|
eleq1d |
|
| 209 |
43
|
adantr |
|
| 210 |
208 209 205
|
rspcdva |
|
| 211 |
206 210
|
remulcld |
|
| 212 |
4 211
|
eqeltrd |
|
| 213 |
201 202 212
|
serfre |
|
| 214 |
213
|
ffvelcdmda |
|
| 215 |
136 83
|
remulcld |
|
| 216 |
191 215
|
eqeltrd |
|
| 217 |
|
le2add |
|
| 218 |
199 200 214 216 217
|
syl22anc |
|
| 219 |
196 218
|
mpan2d |
|
| 220 |
|
eqidd |
|
| 221 |
1
|
recnd |
|
| 222 |
70 197 221
|
syl2an |
|
| 223 |
220 127 222
|
fsumser |
|
| 224 |
223
|
eqcomd |
|
| 225 |
224
|
breq1d |
|
| 226 |
|
eqidd |
|
| 227 |
|
elfznn |
|
| 228 |
70 227 221
|
syl2an |
|
| 229 |
226 167 228
|
fsumser |
|
| 230 |
|
fzfid |
|
| 231 |
179 156 230 228
|
fsumsplit |
|
| 232 |
229 231
|
eqtr3d |
|
| 233 |
|
simpr |
|
| 234 |
233 201
|
eleqtrdi |
|
| 235 |
|
seqp1 |
|
| 236 |
234 235
|
syl |
|
| 237 |
232 236
|
breq12d |
|
| 238 |
219 225 237
|
3imtr4d |
|
| 239 |
238
|
expcom |
|
| 240 |
239
|
a2d |
|
| 241 |
22 28 34 40 68 240
|
nn0ind |
|
| 242 |
241
|
impcom |
|