| Step |
Hyp |
Ref |
Expression |
| 1 |
|
climcnds.1 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
| 2 |
|
climcnds.2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 0 ≤ ( 𝐹 ‘ 𝑘 ) ) |
| 3 |
|
climcnds.3 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐹 ‘ ( 𝑘 + 1 ) ) ≤ ( 𝐹 ‘ 𝑘 ) ) |
| 4 |
|
climcnds.4 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( 𝐺 ‘ 𝑛 ) = ( ( 2 ↑ 𝑛 ) · ( 𝐹 ‘ ( 2 ↑ 𝑛 ) ) ) ) |
| 5 |
|
oveq1 |
⊢ ( 𝑥 = 0 → ( 𝑥 + 1 ) = ( 0 + 1 ) ) |
| 6 |
|
0p1e1 |
⊢ ( 0 + 1 ) = 1 |
| 7 |
5 6
|
eqtrdi |
⊢ ( 𝑥 = 0 → ( 𝑥 + 1 ) = 1 ) |
| 8 |
7
|
oveq2d |
⊢ ( 𝑥 = 0 → ( 2 ↑ ( 𝑥 + 1 ) ) = ( 2 ↑ 1 ) ) |
| 9 |
|
2cn |
⊢ 2 ∈ ℂ |
| 10 |
|
exp1 |
⊢ ( 2 ∈ ℂ → ( 2 ↑ 1 ) = 2 ) |
| 11 |
9 10
|
ax-mp |
⊢ ( 2 ↑ 1 ) = 2 |
| 12 |
|
df-2 |
⊢ 2 = ( 1 + 1 ) |
| 13 |
11 12
|
eqtri |
⊢ ( 2 ↑ 1 ) = ( 1 + 1 ) |
| 14 |
8 13
|
eqtrdi |
⊢ ( 𝑥 = 0 → ( 2 ↑ ( 𝑥 + 1 ) ) = ( 1 + 1 ) ) |
| 15 |
14
|
oveq1d |
⊢ ( 𝑥 = 0 → ( ( 2 ↑ ( 𝑥 + 1 ) ) − 1 ) = ( ( 1 + 1 ) − 1 ) ) |
| 16 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 17 |
16 16
|
pncan3oi |
⊢ ( ( 1 + 1 ) − 1 ) = 1 |
| 18 |
15 17
|
eqtrdi |
⊢ ( 𝑥 = 0 → ( ( 2 ↑ ( 𝑥 + 1 ) ) − 1 ) = 1 ) |
| 19 |
18
|
fveq2d |
⊢ ( 𝑥 = 0 → ( seq 1 ( + , 𝐹 ) ‘ ( ( 2 ↑ ( 𝑥 + 1 ) ) − 1 ) ) = ( seq 1 ( + , 𝐹 ) ‘ 1 ) ) |
| 20 |
|
fveq2 |
⊢ ( 𝑥 = 0 → ( seq 0 ( + , 𝐺 ) ‘ 𝑥 ) = ( seq 0 ( + , 𝐺 ) ‘ 0 ) ) |
| 21 |
19 20
|
breq12d |
⊢ ( 𝑥 = 0 → ( ( seq 1 ( + , 𝐹 ) ‘ ( ( 2 ↑ ( 𝑥 + 1 ) ) − 1 ) ) ≤ ( seq 0 ( + , 𝐺 ) ‘ 𝑥 ) ↔ ( seq 1 ( + , 𝐹 ) ‘ 1 ) ≤ ( seq 0 ( + , 𝐺 ) ‘ 0 ) ) ) |
| 22 |
21
|
imbi2d |
⊢ ( 𝑥 = 0 → ( ( 𝜑 → ( seq 1 ( + , 𝐹 ) ‘ ( ( 2 ↑ ( 𝑥 + 1 ) ) − 1 ) ) ≤ ( seq 0 ( + , 𝐺 ) ‘ 𝑥 ) ) ↔ ( 𝜑 → ( seq 1 ( + , 𝐹 ) ‘ 1 ) ≤ ( seq 0 ( + , 𝐺 ) ‘ 0 ) ) ) ) |
| 23 |
|
oveq1 |
⊢ ( 𝑥 = 𝑗 → ( 𝑥 + 1 ) = ( 𝑗 + 1 ) ) |
| 24 |
23
|
oveq2d |
⊢ ( 𝑥 = 𝑗 → ( 2 ↑ ( 𝑥 + 1 ) ) = ( 2 ↑ ( 𝑗 + 1 ) ) ) |
| 25 |
24
|
fvoveq1d |
⊢ ( 𝑥 = 𝑗 → ( seq 1 ( + , 𝐹 ) ‘ ( ( 2 ↑ ( 𝑥 + 1 ) ) − 1 ) ) = ( seq 1 ( + , 𝐹 ) ‘ ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ) |
| 26 |
|
fveq2 |
⊢ ( 𝑥 = 𝑗 → ( seq 0 ( + , 𝐺 ) ‘ 𝑥 ) = ( seq 0 ( + , 𝐺 ) ‘ 𝑗 ) ) |
| 27 |
25 26
|
breq12d |
⊢ ( 𝑥 = 𝑗 → ( ( seq 1 ( + , 𝐹 ) ‘ ( ( 2 ↑ ( 𝑥 + 1 ) ) − 1 ) ) ≤ ( seq 0 ( + , 𝐺 ) ‘ 𝑥 ) ↔ ( seq 1 ( + , 𝐹 ) ‘ ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ≤ ( seq 0 ( + , 𝐺 ) ‘ 𝑗 ) ) ) |
| 28 |
27
|
imbi2d |
⊢ ( 𝑥 = 𝑗 → ( ( 𝜑 → ( seq 1 ( + , 𝐹 ) ‘ ( ( 2 ↑ ( 𝑥 + 1 ) ) − 1 ) ) ≤ ( seq 0 ( + , 𝐺 ) ‘ 𝑥 ) ) ↔ ( 𝜑 → ( seq 1 ( + , 𝐹 ) ‘ ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ≤ ( seq 0 ( + , 𝐺 ) ‘ 𝑗 ) ) ) ) |
| 29 |
|
oveq1 |
⊢ ( 𝑥 = ( 𝑗 + 1 ) → ( 𝑥 + 1 ) = ( ( 𝑗 + 1 ) + 1 ) ) |
| 30 |
29
|
oveq2d |
⊢ ( 𝑥 = ( 𝑗 + 1 ) → ( 2 ↑ ( 𝑥 + 1 ) ) = ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) ) |
| 31 |
30
|
fvoveq1d |
⊢ ( 𝑥 = ( 𝑗 + 1 ) → ( seq 1 ( + , 𝐹 ) ‘ ( ( 2 ↑ ( 𝑥 + 1 ) ) − 1 ) ) = ( seq 1 ( + , 𝐹 ) ‘ ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ) |
| 32 |
|
fveq2 |
⊢ ( 𝑥 = ( 𝑗 + 1 ) → ( seq 0 ( + , 𝐺 ) ‘ 𝑥 ) = ( seq 0 ( + , 𝐺 ) ‘ ( 𝑗 + 1 ) ) ) |
| 33 |
31 32
|
breq12d |
⊢ ( 𝑥 = ( 𝑗 + 1 ) → ( ( seq 1 ( + , 𝐹 ) ‘ ( ( 2 ↑ ( 𝑥 + 1 ) ) − 1 ) ) ≤ ( seq 0 ( + , 𝐺 ) ‘ 𝑥 ) ↔ ( seq 1 ( + , 𝐹 ) ‘ ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ≤ ( seq 0 ( + , 𝐺 ) ‘ ( 𝑗 + 1 ) ) ) ) |
| 34 |
33
|
imbi2d |
⊢ ( 𝑥 = ( 𝑗 + 1 ) → ( ( 𝜑 → ( seq 1 ( + , 𝐹 ) ‘ ( ( 2 ↑ ( 𝑥 + 1 ) ) − 1 ) ) ≤ ( seq 0 ( + , 𝐺 ) ‘ 𝑥 ) ) ↔ ( 𝜑 → ( seq 1 ( + , 𝐹 ) ‘ ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ≤ ( seq 0 ( + , 𝐺 ) ‘ ( 𝑗 + 1 ) ) ) ) ) |
| 35 |
|
oveq1 |
⊢ ( 𝑥 = 𝑁 → ( 𝑥 + 1 ) = ( 𝑁 + 1 ) ) |
| 36 |
35
|
oveq2d |
⊢ ( 𝑥 = 𝑁 → ( 2 ↑ ( 𝑥 + 1 ) ) = ( 2 ↑ ( 𝑁 + 1 ) ) ) |
| 37 |
36
|
fvoveq1d |
⊢ ( 𝑥 = 𝑁 → ( seq 1 ( + , 𝐹 ) ‘ ( ( 2 ↑ ( 𝑥 + 1 ) ) − 1 ) ) = ( seq 1 ( + , 𝐹 ) ‘ ( ( 2 ↑ ( 𝑁 + 1 ) ) − 1 ) ) ) |
| 38 |
|
fveq2 |
⊢ ( 𝑥 = 𝑁 → ( seq 0 ( + , 𝐺 ) ‘ 𝑥 ) = ( seq 0 ( + , 𝐺 ) ‘ 𝑁 ) ) |
| 39 |
37 38
|
breq12d |
⊢ ( 𝑥 = 𝑁 → ( ( seq 1 ( + , 𝐹 ) ‘ ( ( 2 ↑ ( 𝑥 + 1 ) ) − 1 ) ) ≤ ( seq 0 ( + , 𝐺 ) ‘ 𝑥 ) ↔ ( seq 1 ( + , 𝐹 ) ‘ ( ( 2 ↑ ( 𝑁 + 1 ) ) − 1 ) ) ≤ ( seq 0 ( + , 𝐺 ) ‘ 𝑁 ) ) ) |
| 40 |
39
|
imbi2d |
⊢ ( 𝑥 = 𝑁 → ( ( 𝜑 → ( seq 1 ( + , 𝐹 ) ‘ ( ( 2 ↑ ( 𝑥 + 1 ) ) − 1 ) ) ≤ ( seq 0 ( + , 𝐺 ) ‘ 𝑥 ) ) ↔ ( 𝜑 → ( seq 1 ( + , 𝐹 ) ‘ ( ( 2 ↑ ( 𝑁 + 1 ) ) − 1 ) ) ≤ ( seq 0 ( + , 𝐺 ) ‘ 𝑁 ) ) ) ) |
| 41 |
|
fveq2 |
⊢ ( 𝑘 = 1 → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 1 ) ) |
| 42 |
41
|
eleq1d |
⊢ ( 𝑘 = 1 → ( ( 𝐹 ‘ 𝑘 ) ∈ ℝ ↔ ( 𝐹 ‘ 1 ) ∈ ℝ ) ) |
| 43 |
1
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ℕ ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
| 44 |
|
1nn |
⊢ 1 ∈ ℕ |
| 45 |
44
|
a1i |
⊢ ( 𝜑 → 1 ∈ ℕ ) |
| 46 |
42 43 45
|
rspcdva |
⊢ ( 𝜑 → ( 𝐹 ‘ 1 ) ∈ ℝ ) |
| 47 |
46
|
leidd |
⊢ ( 𝜑 → ( 𝐹 ‘ 1 ) ≤ ( 𝐹 ‘ 1 ) ) |
| 48 |
46
|
recnd |
⊢ ( 𝜑 → ( 𝐹 ‘ 1 ) ∈ ℂ ) |
| 49 |
48
|
mullidd |
⊢ ( 𝜑 → ( 1 · ( 𝐹 ‘ 1 ) ) = ( 𝐹 ‘ 1 ) ) |
| 50 |
47 49
|
breqtrrd |
⊢ ( 𝜑 → ( 𝐹 ‘ 1 ) ≤ ( 1 · ( 𝐹 ‘ 1 ) ) ) |
| 51 |
|
1z |
⊢ 1 ∈ ℤ |
| 52 |
|
eqidd |
⊢ ( 𝜑 → ( 𝐹 ‘ 1 ) = ( 𝐹 ‘ 1 ) ) |
| 53 |
51 52
|
seq1i |
⊢ ( 𝜑 → ( seq 1 ( + , 𝐹 ) ‘ 1 ) = ( 𝐹 ‘ 1 ) ) |
| 54 |
|
0z |
⊢ 0 ∈ ℤ |
| 55 |
|
fveq2 |
⊢ ( 𝑛 = 0 → ( 𝐺 ‘ 𝑛 ) = ( 𝐺 ‘ 0 ) ) |
| 56 |
|
oveq2 |
⊢ ( 𝑛 = 0 → ( 2 ↑ 𝑛 ) = ( 2 ↑ 0 ) ) |
| 57 |
|
exp0 |
⊢ ( 2 ∈ ℂ → ( 2 ↑ 0 ) = 1 ) |
| 58 |
9 57
|
ax-mp |
⊢ ( 2 ↑ 0 ) = 1 |
| 59 |
56 58
|
eqtrdi |
⊢ ( 𝑛 = 0 → ( 2 ↑ 𝑛 ) = 1 ) |
| 60 |
59
|
fveq2d |
⊢ ( 𝑛 = 0 → ( 𝐹 ‘ ( 2 ↑ 𝑛 ) ) = ( 𝐹 ‘ 1 ) ) |
| 61 |
59 60
|
oveq12d |
⊢ ( 𝑛 = 0 → ( ( 2 ↑ 𝑛 ) · ( 𝐹 ‘ ( 2 ↑ 𝑛 ) ) ) = ( 1 · ( 𝐹 ‘ 1 ) ) ) |
| 62 |
55 61
|
eqeq12d |
⊢ ( 𝑛 = 0 → ( ( 𝐺 ‘ 𝑛 ) = ( ( 2 ↑ 𝑛 ) · ( 𝐹 ‘ ( 2 ↑ 𝑛 ) ) ) ↔ ( 𝐺 ‘ 0 ) = ( 1 · ( 𝐹 ‘ 1 ) ) ) ) |
| 63 |
4
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑛 ∈ ℕ0 ( 𝐺 ‘ 𝑛 ) = ( ( 2 ↑ 𝑛 ) · ( 𝐹 ‘ ( 2 ↑ 𝑛 ) ) ) ) |
| 64 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
| 65 |
64
|
a1i |
⊢ ( 𝜑 → 0 ∈ ℕ0 ) |
| 66 |
62 63 65
|
rspcdva |
⊢ ( 𝜑 → ( 𝐺 ‘ 0 ) = ( 1 · ( 𝐹 ‘ 1 ) ) ) |
| 67 |
54 66
|
seq1i |
⊢ ( 𝜑 → ( seq 0 ( + , 𝐺 ) ‘ 0 ) = ( 1 · ( 𝐹 ‘ 1 ) ) ) |
| 68 |
50 53 67
|
3brtr4d |
⊢ ( 𝜑 → ( seq 1 ( + , 𝐹 ) ‘ 1 ) ≤ ( seq 0 ( + , 𝐺 ) ‘ 0 ) ) |
| 69 |
|
fzfid |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( 2 ↑ ( 𝑗 + 1 ) ) ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ∈ Fin ) |
| 70 |
|
simpl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → 𝜑 ) |
| 71 |
|
2nn |
⊢ 2 ∈ ℕ |
| 72 |
|
peano2nn0 |
⊢ ( 𝑗 ∈ ℕ0 → ( 𝑗 + 1 ) ∈ ℕ0 ) |
| 73 |
72
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( 𝑗 + 1 ) ∈ ℕ0 ) |
| 74 |
|
nnexpcl |
⊢ ( ( 2 ∈ ℕ ∧ ( 𝑗 + 1 ) ∈ ℕ0 ) → ( 2 ↑ ( 𝑗 + 1 ) ) ∈ ℕ ) |
| 75 |
71 73 74
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( 2 ↑ ( 𝑗 + 1 ) ) ∈ ℕ ) |
| 76 |
|
elfzuz |
⊢ ( 𝑘 ∈ ( ( 2 ↑ ( 𝑗 + 1 ) ) ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) → 𝑘 ∈ ( ℤ≥ ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ) |
| 77 |
|
eluznn |
⊢ ( ( ( 2 ↑ ( 𝑗 + 1 ) ) ∈ ℕ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ) → 𝑘 ∈ ℕ ) |
| 78 |
75 76 77
|
syl2an |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) ∧ 𝑘 ∈ ( ( 2 ↑ ( 𝑗 + 1 ) ) ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ) → 𝑘 ∈ ℕ ) |
| 79 |
70 78 1
|
syl2an2r |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) ∧ 𝑘 ∈ ( ( 2 ↑ ( 𝑗 + 1 ) ) ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
| 80 |
|
fveq2 |
⊢ ( 𝑘 = ( 2 ↑ ( 𝑗 + 1 ) ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ) |
| 81 |
80
|
eleq1d |
⊢ ( 𝑘 = ( 2 ↑ ( 𝑗 + 1 ) ) → ( ( 𝐹 ‘ 𝑘 ) ∈ ℝ ↔ ( 𝐹 ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ∈ ℝ ) ) |
| 82 |
43
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ∀ 𝑘 ∈ ℕ ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
| 83 |
81 82 75
|
rspcdva |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( 𝐹 ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ∈ ℝ ) |
| 84 |
83
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) ∧ 𝑘 ∈ ( ( 2 ↑ ( 𝑗 + 1 ) ) ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ) → ( 𝐹 ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ∈ ℝ ) |
| 85 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ) → 𝑛 ∈ ( ℤ≥ ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ) |
| 86 |
|
simplll |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ) ∧ 𝑘 ∈ ( ( 2 ↑ ( 𝑗 + 1 ) ) ... 𝑛 ) ) → 𝜑 ) |
| 87 |
75
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ) → ( 2 ↑ ( 𝑗 + 1 ) ) ∈ ℕ ) |
| 88 |
|
elfzuz |
⊢ ( 𝑘 ∈ ( ( 2 ↑ ( 𝑗 + 1 ) ) ... 𝑛 ) → 𝑘 ∈ ( ℤ≥ ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ) |
| 89 |
87 88 77
|
syl2an |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ) ∧ 𝑘 ∈ ( ( 2 ↑ ( 𝑗 + 1 ) ) ... 𝑛 ) ) → 𝑘 ∈ ℕ ) |
| 90 |
86 89 1
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ) ∧ 𝑘 ∈ ( ( 2 ↑ ( 𝑗 + 1 ) ) ... 𝑛 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
| 91 |
|
simplll |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ) ∧ 𝑘 ∈ ( ( 2 ↑ ( 𝑗 + 1 ) ) ... ( 𝑛 − 1 ) ) ) → 𝜑 ) |
| 92 |
|
elfzuz |
⊢ ( 𝑘 ∈ ( ( 2 ↑ ( 𝑗 + 1 ) ) ... ( 𝑛 − 1 ) ) → 𝑘 ∈ ( ℤ≥ ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ) |
| 93 |
87 92 77
|
syl2an |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ) ∧ 𝑘 ∈ ( ( 2 ↑ ( 𝑗 + 1 ) ) ... ( 𝑛 − 1 ) ) ) → 𝑘 ∈ ℕ ) |
| 94 |
91 93 3
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ) ∧ 𝑘 ∈ ( ( 2 ↑ ( 𝑗 + 1 ) ) ... ( 𝑛 − 1 ) ) ) → ( 𝐹 ‘ ( 𝑘 + 1 ) ) ≤ ( 𝐹 ‘ 𝑘 ) ) |
| 95 |
85 90 94
|
monoord2 |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ) → ( 𝐹 ‘ 𝑛 ) ≤ ( 𝐹 ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ) |
| 96 |
95
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ∀ 𝑛 ∈ ( ℤ≥ ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ( 𝐹 ‘ 𝑛 ) ≤ ( 𝐹 ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ) |
| 97 |
|
fveq2 |
⊢ ( 𝑛 = 𝑘 → ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ 𝑘 ) ) |
| 98 |
97
|
breq1d |
⊢ ( 𝑛 = 𝑘 → ( ( 𝐹 ‘ 𝑛 ) ≤ ( 𝐹 ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ↔ ( 𝐹 ‘ 𝑘 ) ≤ ( 𝐹 ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ) ) |
| 99 |
98
|
rspccva |
⊢ ( ( ∀ 𝑛 ∈ ( ℤ≥ ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ( 𝐹 ‘ 𝑛 ) ≤ ( 𝐹 ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ) → ( 𝐹 ‘ 𝑘 ) ≤ ( 𝐹 ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ) |
| 100 |
96 76 99
|
syl2an |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) ∧ 𝑘 ∈ ( ( 2 ↑ ( 𝑗 + 1 ) ) ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ) → ( 𝐹 ‘ 𝑘 ) ≤ ( 𝐹 ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ) |
| 101 |
69 79 84 100
|
fsumle |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → Σ 𝑘 ∈ ( ( 2 ↑ ( 𝑗 + 1 ) ) ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ( 𝐹 ‘ 𝑘 ) ≤ Σ 𝑘 ∈ ( ( 2 ↑ ( 𝑗 + 1 ) ) ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ( 𝐹 ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ) |
| 102 |
|
fzfid |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( 1 ... ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ∈ Fin ) |
| 103 |
|
hashcl |
⊢ ( ( 1 ... ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ∈ Fin → ( ♯ ‘ ( 1 ... ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ) ∈ ℕ0 ) |
| 104 |
102 103
|
syl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ♯ ‘ ( 1 ... ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ) ∈ ℕ0 ) |
| 105 |
104
|
nn0cnd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ♯ ‘ ( 1 ... ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ) ∈ ℂ ) |
| 106 |
75
|
nnred |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( 2 ↑ ( 𝑗 + 1 ) ) ∈ ℝ ) |
| 107 |
106
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( 2 ↑ ( 𝑗 + 1 ) ) ∈ ℂ ) |
| 108 |
|
hashcl |
⊢ ( ( ( 2 ↑ ( 𝑗 + 1 ) ) ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ∈ Fin → ( ♯ ‘ ( ( 2 ↑ ( 𝑗 + 1 ) ) ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ) ∈ ℕ0 ) |
| 109 |
69 108
|
syl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ♯ ‘ ( ( 2 ↑ ( 𝑗 + 1 ) ) ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ) ∈ ℕ0 ) |
| 110 |
109
|
nn0cnd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ♯ ‘ ( ( 2 ↑ ( 𝑗 + 1 ) ) ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ) ∈ ℂ ) |
| 111 |
|
2z |
⊢ 2 ∈ ℤ |
| 112 |
|
zexpcl |
⊢ ( ( 2 ∈ ℤ ∧ ( 𝑗 + 1 ) ∈ ℕ0 ) → ( 2 ↑ ( 𝑗 + 1 ) ) ∈ ℤ ) |
| 113 |
111 73 112
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( 2 ↑ ( 𝑗 + 1 ) ) ∈ ℤ ) |
| 114 |
|
2re |
⊢ 2 ∈ ℝ |
| 115 |
|
1le2 |
⊢ 1 ≤ 2 |
| 116 |
|
nn0p1nn |
⊢ ( 𝑗 ∈ ℕ0 → ( 𝑗 + 1 ) ∈ ℕ ) |
| 117 |
116
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( 𝑗 + 1 ) ∈ ℕ ) |
| 118 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
| 119 |
117 118
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( 𝑗 + 1 ) ∈ ( ℤ≥ ‘ 1 ) ) |
| 120 |
|
leexp2a |
⊢ ( ( 2 ∈ ℝ ∧ 1 ≤ 2 ∧ ( 𝑗 + 1 ) ∈ ( ℤ≥ ‘ 1 ) ) → ( 2 ↑ 1 ) ≤ ( 2 ↑ ( 𝑗 + 1 ) ) ) |
| 121 |
114 115 119 120
|
mp3an12i |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( 2 ↑ 1 ) ≤ ( 2 ↑ ( 𝑗 + 1 ) ) ) |
| 122 |
11 121
|
eqbrtrrid |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → 2 ≤ ( 2 ↑ ( 𝑗 + 1 ) ) ) |
| 123 |
111
|
eluz1i |
⊢ ( ( 2 ↑ ( 𝑗 + 1 ) ) ∈ ( ℤ≥ ‘ 2 ) ↔ ( ( 2 ↑ ( 𝑗 + 1 ) ) ∈ ℤ ∧ 2 ≤ ( 2 ↑ ( 𝑗 + 1 ) ) ) ) |
| 124 |
113 122 123
|
sylanbrc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( 2 ↑ ( 𝑗 + 1 ) ) ∈ ( ℤ≥ ‘ 2 ) ) |
| 125 |
|
uz2m1nn |
⊢ ( ( 2 ↑ ( 𝑗 + 1 ) ) ∈ ( ℤ≥ ‘ 2 ) → ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ∈ ℕ ) |
| 126 |
124 125
|
syl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ∈ ℕ ) |
| 127 |
126 118
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ∈ ( ℤ≥ ‘ 1 ) ) |
| 128 |
|
peano2zm |
⊢ ( ( 2 ↑ ( 𝑗 + 1 ) ) ∈ ℤ → ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ∈ ℤ ) |
| 129 |
113 128
|
syl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ∈ ℤ ) |
| 130 |
|
peano2nn0 |
⊢ ( ( 𝑗 + 1 ) ∈ ℕ0 → ( ( 𝑗 + 1 ) + 1 ) ∈ ℕ0 ) |
| 131 |
73 130
|
syl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( 𝑗 + 1 ) + 1 ) ∈ ℕ0 ) |
| 132 |
|
zexpcl |
⊢ ( ( 2 ∈ ℤ ∧ ( ( 𝑗 + 1 ) + 1 ) ∈ ℕ0 ) → ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) ∈ ℤ ) |
| 133 |
111 131 132
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) ∈ ℤ ) |
| 134 |
|
peano2zm |
⊢ ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) ∈ ℤ → ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ∈ ℤ ) |
| 135 |
133 134
|
syl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ∈ ℤ ) |
| 136 |
113
|
zred |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( 2 ↑ ( 𝑗 + 1 ) ) ∈ ℝ ) |
| 137 |
133
|
zred |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) ∈ ℝ ) |
| 138 |
|
1red |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → 1 ∈ ℝ ) |
| 139 |
73
|
nn0zd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( 𝑗 + 1 ) ∈ ℤ ) |
| 140 |
|
uzid |
⊢ ( ( 𝑗 + 1 ) ∈ ℤ → ( 𝑗 + 1 ) ∈ ( ℤ≥ ‘ ( 𝑗 + 1 ) ) ) |
| 141 |
|
peano2uz |
⊢ ( ( 𝑗 + 1 ) ∈ ( ℤ≥ ‘ ( 𝑗 + 1 ) ) → ( ( 𝑗 + 1 ) + 1 ) ∈ ( ℤ≥ ‘ ( 𝑗 + 1 ) ) ) |
| 142 |
|
leexp2a |
⊢ ( ( 2 ∈ ℝ ∧ 1 ≤ 2 ∧ ( ( 𝑗 + 1 ) + 1 ) ∈ ( ℤ≥ ‘ ( 𝑗 + 1 ) ) ) → ( 2 ↑ ( 𝑗 + 1 ) ) ≤ ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) ) |
| 143 |
114 115 142
|
mp3an12 |
⊢ ( ( ( 𝑗 + 1 ) + 1 ) ∈ ( ℤ≥ ‘ ( 𝑗 + 1 ) ) → ( 2 ↑ ( 𝑗 + 1 ) ) ≤ ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) ) |
| 144 |
139 140 141 143
|
4syl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( 2 ↑ ( 𝑗 + 1 ) ) ≤ ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) ) |
| 145 |
136 137 138 144
|
lesub1dd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ≤ ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) |
| 146 |
|
eluz2 |
⊢ ( ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ∈ ( ℤ≥ ‘ ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ↔ ( ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ∈ ℤ ∧ ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ∈ ℤ ∧ ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ≤ ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ) |
| 147 |
129 135 145 146
|
syl3anbrc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ∈ ( ℤ≥ ‘ ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ) |
| 148 |
|
elfzuzb |
⊢ ( ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ∈ ( 1 ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ↔ ( ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ∈ ( ℤ≥ ‘ 1 ) ∧ ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ∈ ( ℤ≥ ‘ ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ) ) |
| 149 |
127 147 148
|
sylanbrc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ∈ ( 1 ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ) |
| 150 |
|
fzsplit |
⊢ ( ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ∈ ( 1 ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) → ( 1 ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) = ( ( 1 ... ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ∪ ( ( ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) + 1 ) ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ) ) |
| 151 |
149 150
|
syl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( 1 ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) = ( ( 1 ... ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ∪ ( ( ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) + 1 ) ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ) ) |
| 152 |
|
npcan |
⊢ ( ( ( 2 ↑ ( 𝑗 + 1 ) ) ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) + 1 ) = ( 2 ↑ ( 𝑗 + 1 ) ) ) |
| 153 |
107 16 152
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) + 1 ) = ( 2 ↑ ( 𝑗 + 1 ) ) ) |
| 154 |
153
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) + 1 ) ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) = ( ( 2 ↑ ( 𝑗 + 1 ) ) ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ) |
| 155 |
154
|
uneq2d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( 1 ... ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ∪ ( ( ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) + 1 ) ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ) = ( ( 1 ... ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ∪ ( ( 2 ↑ ( 𝑗 + 1 ) ) ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ) ) |
| 156 |
151 155
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( 1 ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) = ( ( 1 ... ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ∪ ( ( 2 ↑ ( 𝑗 + 1 ) ) ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ) ) |
| 157 |
156
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ♯ ‘ ( 1 ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ) = ( ♯ ‘ ( ( 1 ... ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ∪ ( ( 2 ↑ ( 𝑗 + 1 ) ) ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ) ) ) |
| 158 |
|
expp1 |
⊢ ( ( 2 ∈ ℂ ∧ ( 𝑗 + 1 ) ∈ ℕ0 ) → ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) = ( ( 2 ↑ ( 𝑗 + 1 ) ) · 2 ) ) |
| 159 |
9 73 158
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) = ( ( 2 ↑ ( 𝑗 + 1 ) ) · 2 ) ) |
| 160 |
107
|
times2d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( 2 ↑ ( 𝑗 + 1 ) ) · 2 ) = ( ( 2 ↑ ( 𝑗 + 1 ) ) + ( 2 ↑ ( 𝑗 + 1 ) ) ) ) |
| 161 |
159 160
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) = ( ( 2 ↑ ( 𝑗 + 1 ) ) + ( 2 ↑ ( 𝑗 + 1 ) ) ) ) |
| 162 |
161
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) = ( ( ( 2 ↑ ( 𝑗 + 1 ) ) + ( 2 ↑ ( 𝑗 + 1 ) ) ) − 1 ) ) |
| 163 |
|
1cnd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → 1 ∈ ℂ ) |
| 164 |
107 107 163
|
addsubd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( ( 2 ↑ ( 𝑗 + 1 ) ) + ( 2 ↑ ( 𝑗 + 1 ) ) ) − 1 ) = ( ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) + ( 2 ↑ ( 𝑗 + 1 ) ) ) ) |
| 165 |
162 164
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) = ( ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) + ( 2 ↑ ( 𝑗 + 1 ) ) ) ) |
| 166 |
|
uztrn |
⊢ ( ( ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ∈ ( ℤ≥ ‘ ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ∧ ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ∈ ( ℤ≥ ‘ 1 ) ) → ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ∈ ( ℤ≥ ‘ 1 ) ) |
| 167 |
147 127 166
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ∈ ( ℤ≥ ‘ 1 ) ) |
| 168 |
167 118
|
eleqtrrdi |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ∈ ℕ ) |
| 169 |
168
|
nnnn0d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ∈ ℕ0 ) |
| 170 |
|
hashfz1 |
⊢ ( ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ∈ ℕ0 → ( ♯ ‘ ( 1 ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ) = ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) |
| 171 |
169 170
|
syl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ♯ ‘ ( 1 ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ) = ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) |
| 172 |
126
|
nnnn0d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ∈ ℕ0 ) |
| 173 |
|
hashfz1 |
⊢ ( ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ∈ ℕ0 → ( ♯ ‘ ( 1 ... ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ) = ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) |
| 174 |
172 173
|
syl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ♯ ‘ ( 1 ... ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ) = ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) |
| 175 |
174
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( ♯ ‘ ( 1 ... ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ) + ( 2 ↑ ( 𝑗 + 1 ) ) ) = ( ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) + ( 2 ↑ ( 𝑗 + 1 ) ) ) ) |
| 176 |
165 171 175
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ♯ ‘ ( 1 ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ) = ( ( ♯ ‘ ( 1 ... ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ) + ( 2 ↑ ( 𝑗 + 1 ) ) ) ) |
| 177 |
106
|
ltm1d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) < ( 2 ↑ ( 𝑗 + 1 ) ) ) |
| 178 |
|
fzdisj |
⊢ ( ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) < ( 2 ↑ ( 𝑗 + 1 ) ) → ( ( 1 ... ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ∩ ( ( 2 ↑ ( 𝑗 + 1 ) ) ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ) = ∅ ) |
| 179 |
177 178
|
syl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( 1 ... ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ∩ ( ( 2 ↑ ( 𝑗 + 1 ) ) ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ) = ∅ ) |
| 180 |
|
hashun |
⊢ ( ( ( 1 ... ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ∈ Fin ∧ ( ( 2 ↑ ( 𝑗 + 1 ) ) ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ∈ Fin ∧ ( ( 1 ... ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ∩ ( ( 2 ↑ ( 𝑗 + 1 ) ) ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ) = ∅ ) → ( ♯ ‘ ( ( 1 ... ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ∪ ( ( 2 ↑ ( 𝑗 + 1 ) ) ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ) ) = ( ( ♯ ‘ ( 1 ... ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ) + ( ♯ ‘ ( ( 2 ↑ ( 𝑗 + 1 ) ) ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ) ) ) |
| 181 |
102 69 179 180
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ♯ ‘ ( ( 1 ... ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ∪ ( ( 2 ↑ ( 𝑗 + 1 ) ) ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ) ) = ( ( ♯ ‘ ( 1 ... ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ) + ( ♯ ‘ ( ( 2 ↑ ( 𝑗 + 1 ) ) ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ) ) ) |
| 182 |
157 176 181
|
3eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( ♯ ‘ ( 1 ... ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ) + ( 2 ↑ ( 𝑗 + 1 ) ) ) = ( ( ♯ ‘ ( 1 ... ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ) + ( ♯ ‘ ( ( 2 ↑ ( 𝑗 + 1 ) ) ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ) ) ) |
| 183 |
105 107 110 182
|
addcanad |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( 2 ↑ ( 𝑗 + 1 ) ) = ( ♯ ‘ ( ( 2 ↑ ( 𝑗 + 1 ) ) ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ) ) |
| 184 |
183
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( 2 ↑ ( 𝑗 + 1 ) ) · ( 𝐹 ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ) = ( ( ♯ ‘ ( ( 2 ↑ ( 𝑗 + 1 ) ) ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ) · ( 𝐹 ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ) ) |
| 185 |
|
fveq2 |
⊢ ( 𝑛 = ( 𝑗 + 1 ) → ( 𝐺 ‘ 𝑛 ) = ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) |
| 186 |
|
oveq2 |
⊢ ( 𝑛 = ( 𝑗 + 1 ) → ( 2 ↑ 𝑛 ) = ( 2 ↑ ( 𝑗 + 1 ) ) ) |
| 187 |
186
|
fveq2d |
⊢ ( 𝑛 = ( 𝑗 + 1 ) → ( 𝐹 ‘ ( 2 ↑ 𝑛 ) ) = ( 𝐹 ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ) |
| 188 |
186 187
|
oveq12d |
⊢ ( 𝑛 = ( 𝑗 + 1 ) → ( ( 2 ↑ 𝑛 ) · ( 𝐹 ‘ ( 2 ↑ 𝑛 ) ) ) = ( ( 2 ↑ ( 𝑗 + 1 ) ) · ( 𝐹 ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ) ) |
| 189 |
185 188
|
eqeq12d |
⊢ ( 𝑛 = ( 𝑗 + 1 ) → ( ( 𝐺 ‘ 𝑛 ) = ( ( 2 ↑ 𝑛 ) · ( 𝐹 ‘ ( 2 ↑ 𝑛 ) ) ) ↔ ( 𝐺 ‘ ( 𝑗 + 1 ) ) = ( ( 2 ↑ ( 𝑗 + 1 ) ) · ( 𝐹 ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ) ) ) |
| 190 |
63
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ∀ 𝑛 ∈ ℕ0 ( 𝐺 ‘ 𝑛 ) = ( ( 2 ↑ 𝑛 ) · ( 𝐹 ‘ ( 2 ↑ 𝑛 ) ) ) ) |
| 191 |
189 190 73
|
rspcdva |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( 𝐺 ‘ ( 𝑗 + 1 ) ) = ( ( 2 ↑ ( 𝑗 + 1 ) ) · ( 𝐹 ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ) ) |
| 192 |
83
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( 𝐹 ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ∈ ℂ ) |
| 193 |
|
fsumconst |
⊢ ( ( ( ( 2 ↑ ( 𝑗 + 1 ) ) ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ∈ Fin ∧ ( 𝐹 ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ∈ ℂ ) → Σ 𝑘 ∈ ( ( 2 ↑ ( 𝑗 + 1 ) ) ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ( 𝐹 ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) = ( ( ♯ ‘ ( ( 2 ↑ ( 𝑗 + 1 ) ) ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ) · ( 𝐹 ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ) ) |
| 194 |
69 192 193
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → Σ 𝑘 ∈ ( ( 2 ↑ ( 𝑗 + 1 ) ) ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ( 𝐹 ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) = ( ( ♯ ‘ ( ( 2 ↑ ( 𝑗 + 1 ) ) ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ) · ( 𝐹 ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ) ) |
| 195 |
184 191 194
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( 𝐺 ‘ ( 𝑗 + 1 ) ) = Σ 𝑘 ∈ ( ( 2 ↑ ( 𝑗 + 1 ) ) ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ( 𝐹 ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ) |
| 196 |
101 195
|
breqtrrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → Σ 𝑘 ∈ ( ( 2 ↑ ( 𝑗 + 1 ) ) ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ( 𝐹 ‘ 𝑘 ) ≤ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) |
| 197 |
|
elfznn |
⊢ ( 𝑘 ∈ ( 1 ... ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) → 𝑘 ∈ ℕ ) |
| 198 |
70 197 1
|
syl2an |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) ∧ 𝑘 ∈ ( 1 ... ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
| 199 |
102 198
|
fsumrecl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → Σ 𝑘 ∈ ( 1 ... ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
| 200 |
69 79
|
fsumrecl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → Σ 𝑘 ∈ ( ( 2 ↑ ( 𝑗 + 1 ) ) ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
| 201 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
| 202 |
|
0zd |
⊢ ( 𝜑 → 0 ∈ ℤ ) |
| 203 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → 𝑛 ∈ ℕ0 ) |
| 204 |
|
nnexpcl |
⊢ ( ( 2 ∈ ℕ ∧ 𝑛 ∈ ℕ0 ) → ( 2 ↑ 𝑛 ) ∈ ℕ ) |
| 205 |
71 203 204
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( 2 ↑ 𝑛 ) ∈ ℕ ) |
| 206 |
205
|
nnred |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( 2 ↑ 𝑛 ) ∈ ℝ ) |
| 207 |
|
fveq2 |
⊢ ( 𝑘 = ( 2 ↑ 𝑛 ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ ( 2 ↑ 𝑛 ) ) ) |
| 208 |
207
|
eleq1d |
⊢ ( 𝑘 = ( 2 ↑ 𝑛 ) → ( ( 𝐹 ‘ 𝑘 ) ∈ ℝ ↔ ( 𝐹 ‘ ( 2 ↑ 𝑛 ) ) ∈ ℝ ) ) |
| 209 |
43
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ∀ 𝑘 ∈ ℕ ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
| 210 |
208 209 205
|
rspcdva |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( 𝐹 ‘ ( 2 ↑ 𝑛 ) ) ∈ ℝ ) |
| 211 |
206 210
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( ( 2 ↑ 𝑛 ) · ( 𝐹 ‘ ( 2 ↑ 𝑛 ) ) ) ∈ ℝ ) |
| 212 |
4 211
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( 𝐺 ‘ 𝑛 ) ∈ ℝ ) |
| 213 |
201 202 212
|
serfre |
⊢ ( 𝜑 → seq 0 ( + , 𝐺 ) : ℕ0 ⟶ ℝ ) |
| 214 |
213
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( seq 0 ( + , 𝐺 ) ‘ 𝑗 ) ∈ ℝ ) |
| 215 |
136 83
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( 2 ↑ ( 𝑗 + 1 ) ) · ( 𝐹 ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ) ∈ ℝ ) |
| 216 |
191 215
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( 𝐺 ‘ ( 𝑗 + 1 ) ) ∈ ℝ ) |
| 217 |
|
le2add |
⊢ ( ( ( Σ 𝑘 ∈ ( 1 ... ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ( 𝐹 ‘ 𝑘 ) ∈ ℝ ∧ Σ 𝑘 ∈ ( ( 2 ↑ ( 𝑗 + 1 ) ) ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) ∧ ( ( seq 0 ( + , 𝐺 ) ‘ 𝑗 ) ∈ ℝ ∧ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ∈ ℝ ) ) → ( ( Σ 𝑘 ∈ ( 1 ... ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ( 𝐹 ‘ 𝑘 ) ≤ ( seq 0 ( + , 𝐺 ) ‘ 𝑗 ) ∧ Σ 𝑘 ∈ ( ( 2 ↑ ( 𝑗 + 1 ) ) ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ( 𝐹 ‘ 𝑘 ) ≤ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) → ( Σ 𝑘 ∈ ( 1 ... ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ( 𝐹 ‘ 𝑘 ) + Σ 𝑘 ∈ ( ( 2 ↑ ( 𝑗 + 1 ) ) ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ( 𝐹 ‘ 𝑘 ) ) ≤ ( ( seq 0 ( + , 𝐺 ) ‘ 𝑗 ) + ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ) ) |
| 218 |
199 200 214 216 217
|
syl22anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( Σ 𝑘 ∈ ( 1 ... ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ( 𝐹 ‘ 𝑘 ) ≤ ( seq 0 ( + , 𝐺 ) ‘ 𝑗 ) ∧ Σ 𝑘 ∈ ( ( 2 ↑ ( 𝑗 + 1 ) ) ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ( 𝐹 ‘ 𝑘 ) ≤ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) → ( Σ 𝑘 ∈ ( 1 ... ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ( 𝐹 ‘ 𝑘 ) + Σ 𝑘 ∈ ( ( 2 ↑ ( 𝑗 + 1 ) ) ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ( 𝐹 ‘ 𝑘 ) ) ≤ ( ( seq 0 ( + , 𝐺 ) ‘ 𝑗 ) + ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ) ) |
| 219 |
196 218
|
mpan2d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( Σ 𝑘 ∈ ( 1 ... ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ( 𝐹 ‘ 𝑘 ) ≤ ( seq 0 ( + , 𝐺 ) ‘ 𝑗 ) → ( Σ 𝑘 ∈ ( 1 ... ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ( 𝐹 ‘ 𝑘 ) + Σ 𝑘 ∈ ( ( 2 ↑ ( 𝑗 + 1 ) ) ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ( 𝐹 ‘ 𝑘 ) ) ≤ ( ( seq 0 ( + , 𝐺 ) ‘ 𝑗 ) + ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ) ) |
| 220 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) ∧ 𝑘 ∈ ( 1 ... ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑘 ) ) |
| 221 |
1
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
| 222 |
70 197 221
|
syl2an |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) ∧ 𝑘 ∈ ( 1 ... ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
| 223 |
220 127 222
|
fsumser |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → Σ 𝑘 ∈ ( 1 ... ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ( 𝐹 ‘ 𝑘 ) = ( seq 1 ( + , 𝐹 ) ‘ ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ) |
| 224 |
223
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( seq 1 ( + , 𝐹 ) ‘ ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) = Σ 𝑘 ∈ ( 1 ... ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ( 𝐹 ‘ 𝑘 ) ) |
| 225 |
224
|
breq1d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( seq 1 ( + , 𝐹 ) ‘ ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ≤ ( seq 0 ( + , 𝐺 ) ‘ 𝑗 ) ↔ Σ 𝑘 ∈ ( 1 ... ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ( 𝐹 ‘ 𝑘 ) ≤ ( seq 0 ( + , 𝐺 ) ‘ 𝑗 ) ) ) |
| 226 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) ∧ 𝑘 ∈ ( 1 ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑘 ) ) |
| 227 |
|
elfznn |
⊢ ( 𝑘 ∈ ( 1 ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) → 𝑘 ∈ ℕ ) |
| 228 |
70 227 221
|
syl2an |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) ∧ 𝑘 ∈ ( 1 ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
| 229 |
226 167 228
|
fsumser |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → Σ 𝑘 ∈ ( 1 ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ( 𝐹 ‘ 𝑘 ) = ( seq 1 ( + , 𝐹 ) ‘ ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ) |
| 230 |
|
fzfid |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( 1 ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ∈ Fin ) |
| 231 |
179 156 230 228
|
fsumsplit |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → Σ 𝑘 ∈ ( 1 ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ( 𝐹 ‘ 𝑘 ) = ( Σ 𝑘 ∈ ( 1 ... ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ( 𝐹 ‘ 𝑘 ) + Σ 𝑘 ∈ ( ( 2 ↑ ( 𝑗 + 1 ) ) ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ( 𝐹 ‘ 𝑘 ) ) ) |
| 232 |
229 231
|
eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( seq 1 ( + , 𝐹 ) ‘ ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) = ( Σ 𝑘 ∈ ( 1 ... ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ( 𝐹 ‘ 𝑘 ) + Σ 𝑘 ∈ ( ( 2 ↑ ( 𝑗 + 1 ) ) ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ( 𝐹 ‘ 𝑘 ) ) ) |
| 233 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → 𝑗 ∈ ℕ0 ) |
| 234 |
233 201
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → 𝑗 ∈ ( ℤ≥ ‘ 0 ) ) |
| 235 |
|
seqp1 |
⊢ ( 𝑗 ∈ ( ℤ≥ ‘ 0 ) → ( seq 0 ( + , 𝐺 ) ‘ ( 𝑗 + 1 ) ) = ( ( seq 0 ( + , 𝐺 ) ‘ 𝑗 ) + ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ) |
| 236 |
234 235
|
syl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( seq 0 ( + , 𝐺 ) ‘ ( 𝑗 + 1 ) ) = ( ( seq 0 ( + , 𝐺 ) ‘ 𝑗 ) + ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ) |
| 237 |
232 236
|
breq12d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( seq 1 ( + , 𝐹 ) ‘ ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ≤ ( seq 0 ( + , 𝐺 ) ‘ ( 𝑗 + 1 ) ) ↔ ( Σ 𝑘 ∈ ( 1 ... ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ( 𝐹 ‘ 𝑘 ) + Σ 𝑘 ∈ ( ( 2 ↑ ( 𝑗 + 1 ) ) ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ( 𝐹 ‘ 𝑘 ) ) ≤ ( ( seq 0 ( + , 𝐺 ) ‘ 𝑗 ) + ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ) ) |
| 238 |
219 225 237
|
3imtr4d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( seq 1 ( + , 𝐹 ) ‘ ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ≤ ( seq 0 ( + , 𝐺 ) ‘ 𝑗 ) → ( seq 1 ( + , 𝐹 ) ‘ ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ≤ ( seq 0 ( + , 𝐺 ) ‘ ( 𝑗 + 1 ) ) ) ) |
| 239 |
238
|
expcom |
⊢ ( 𝑗 ∈ ℕ0 → ( 𝜑 → ( ( seq 1 ( + , 𝐹 ) ‘ ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ≤ ( seq 0 ( + , 𝐺 ) ‘ 𝑗 ) → ( seq 1 ( + , 𝐹 ) ‘ ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ≤ ( seq 0 ( + , 𝐺 ) ‘ ( 𝑗 + 1 ) ) ) ) ) |
| 240 |
239
|
a2d |
⊢ ( 𝑗 ∈ ℕ0 → ( ( 𝜑 → ( seq 1 ( + , 𝐹 ) ‘ ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ≤ ( seq 0 ( + , 𝐺 ) ‘ 𝑗 ) ) → ( 𝜑 → ( seq 1 ( + , 𝐹 ) ‘ ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ≤ ( seq 0 ( + , 𝐺 ) ‘ ( 𝑗 + 1 ) ) ) ) ) |
| 241 |
22 28 34 40 68 240
|
nn0ind |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝜑 → ( seq 1 ( + , 𝐹 ) ‘ ( ( 2 ↑ ( 𝑁 + 1 ) ) − 1 ) ) ≤ ( seq 0 ( + , 𝐺 ) ‘ 𝑁 ) ) ) |
| 242 |
241
|
impcom |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ℕ0 ) → ( seq 1 ( + , 𝐹 ) ‘ ( ( 2 ↑ ( 𝑁 + 1 ) ) − 1 ) ) ≤ ( seq 0 ( + , 𝐺 ) ‘ 𝑁 ) ) |